Multi-Scale Remote Sensing Semantic Analysis Based on a Global Perspective

被引:8
|
作者
Cui, Wei [1 ]
Zhang, Dongyou [1 ]
He, Xin [1 ]
Yao, Meng [1 ]
Wang, Ziwei [1 ]
Hao, Yuanjie [1 ]
Li, Jie [1 ]
Wu, Weijie [1 ]
Cui, Wenqi [1 ]
Huang, Jiejun [1 ]
机构
[1] Wuhan Univ Technol, Sch Resources & Environm Engn, Wuhan 430070, Hubei, Peoples R China
基金
国家重点研发计划;
关键词
LSTM; multi-scale; remote sensing object; image captioning; SPECTRAL-SPATIAL CLASSIFICATION; NEURAL-NETWORKS; SCENE CLASSIFICATION;
D O I
10.3390/ijgi8090417
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Remote sensing image captioning involves remote sensing objects and their spatial relationships. However, it is still difficult to determine the spatial extent of a remote sensing object and the size of a sample patch. If the patch size is too large, it will include too many remote sensing objects and their complex spatial relationships. This will increase the computational burden of the image captioning network and reduce its precision. If the patch size is too small, it often fails to provide enough environmental and contextual information, which makes the remote sensing object difficult to describe. To address this problem, we propose a multi-scale semantic long short-term memory network (MS-LSTM). The remote sensing images are paired into image patches with different spatial scales. First, the large-scale patches have larger sizes. We use a Visual Geometry Group (VGG) network to extract the features from the large-scale patches and input them into the improved MS-LSTM network as the semantic information, which provides a larger receptive field and more contextual semantic information for small-scale image caption so as to play the role of global perspective, thereby enabling the accurate identification of small-scale samples with the same features. Second, a small-scale patch is used to highlight remote sensing objects and simplify their spatial relations. In addition, the multi-receptive field provides perspectives from local to global. The experimental results demonstrated that compared with the original long short-term memory network (LSTM), the MS-LSTM's Bilingual Evaluation Understudy (BLEU) has been increased by 5.6% to 0.859, thereby reflecting that the MS-LSTM has a more comprehensive receptive field, which provides more abundant semantic information and enhances the remote sensing image captions.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Multi-scale Classification Based on Remote Sensing
    Li Peng-li
    Ti Wei-ping
    Li Jia-chun
    [J]. ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING IV, 2014, 580-583 : 2853 - 2859
  • [2] Semantic Segmentation of Remote Sensing Image Based on Multi-Scale Semantic Encoder-Decoder Network
    Liang Y.
    Yi C.-X.
    Wang G.-Y.
    Hu Y.-H.
    [J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (11): : 3199 - 3214
  • [3] Semantic segmentation network for remote sensing image based on multi-scale mutual attention
    Liu C.-J.
    Qiao Z.
    Yan H.-W.
    Wu X.-S.
    Wang J.-W.
    Xin Y.-Q.
    [J]. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (07): : 1335 - 1344
  • [4] Semantic Segmentation on Remote Sensing Images with Multi-Scale Feature Fusion
    Zhang J.
    Jin Q.
    Wang H.
    Da C.
    Xiang S.
    Pan C.
    [J]. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (09): : 1509 - 1517
  • [5] Multi-Scale Context Aggregation for Semantic Segmentation of Remote Sensing Images
    Zhang, Jing
    Lin, Shaofu
    Ding, Lei
    Bruzzone, Lorenzo
    [J]. REMOTE SENSING, 2020, 12 (04)
  • [6] Semantic Segmentation of Remote Sensing Images Based on Dual Attention and Multi-scale Feature Fusion
    Weng, Mengqian
    Hu, Zhibo
    Xie, Xiaopeng
    Li, Yunhong
    Hu, Lei
    [J]. TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [7] Remote sensing image semantic segmentation network based on multi-scale feature enhancement fusion
    Wang, Feiting
    Zhang, Yuan
    Hu, Qiongqiong
    Zhu, Yu
    [J]. GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [8] A multi-scale semantic feature fusion method for remote sensing crop classification
    Huang, Xizhi
    Wang, Hong
    Li, Xiaobing
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 224
  • [9] Multi-scale attention fusion network for semantic segmentation of remote sensing images
    Wen, Zhiqiang
    Huang, Hongxu
    Liu, Shuai
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (24) : 7909 - 7926
  • [10] MCNet: A Multi-scale and Cascade Network for Semantic Segmentation of Remote Sensing Images
    Zhou, Yin
    Li, Tianyi
    Li, Xianju
    Feng, Ruyi
    [J]. WEB AND BIG DATA, PT II, APWEB-WAIM 2023, 2024, 14332 : 162 - 176