On Generating Monte Carlo Samples of Continuous Diffusion Bridges

被引:23
|
作者
Lin, Ming [1 ]
Chen, Rong [2 ,3 ]
Mykland, Per [4 ]
机构
[1] Xiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R China
[2] Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USA
[3] Peking Univ, Dept Business Stat & Econometr, Guanghua Sch Management, Beijing 100871, Peoples R China
[4] Univ Chicago, Chicago, IL 60636 USA
基金
美国国家科学基金会;
关键词
Backward pilot; Priority score; Resampling; Sequential Monte Carlo; Stochastic diffusion equation; MODELS; VOLATILITY; INFERENCE;
D O I
10.1198/jasa.2010.tm09057
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Diffusion processes are widely used in engineering, finance, physics, and other fields. Usually continuous-time diffusion processes can be observed only at discrete time points. For many applications, it is often useful to impute continuous-time bridge samples that follow the diffusion dynamics and connect each pair of the consecutive observations. The sequential Monte Carlo (SMC) method is a useful tool for generating the intermediate paths of the bridge. The paths often are generated forward from the starting observation and forced in some ways to connect with the end observation. In this article we propose a constrained SMC algorithm with an effective resampling scheme guided by backward pilots carrying the information of the end observation. This resampling scheme can be easily combined with any forward SMC sampler. Two synthetic examples are used to demonstrate the effectiveness of the resampling scheme.
引用
收藏
页码:820 / 838
页数:19
相关论文
共 50 条
  • [1] Diffusion Monte Carlo in Continuous Time
    Olav F. Syljuåsen
    [J]. Journal of Low Temperature Physics, 2005, 140 : 281 - 292
  • [2] Diffusion Monte Carlo in continuous time
    Syljuåsen, OF
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 140 (3-4) : 281 - 292
  • [3] A piecewise deterministic Monte Carlo method for diffusion bridges
    Joris Bierkens
    Sebastiano Grazzi
    Frank van der Meulen
    Moritz Schauer
    [J]. Statistics and Computing, 2021, 31
  • [4] A piecewise deterministic Monte Carlo method for diffusion bridges
    Bierkens, Joris
    Grazzi, Sebastiano
    van der Meulen, Frank
    Schauer, Moritz
    [J]. STATISTICS AND COMPUTING, 2021, 31 (03)
  • [5] Enhancing Least Squares Monte Carlo with diffusion bridges: an application to energy facilities
    Pellegrino, T.
    Sabino, P.
    [J]. QUANTITATIVE FINANCE, 2015, 15 (05) : 761 - 772
  • [6] Diffusion Monte Carlo
    Mitas, L
    [J]. QUANTUM MONTE CARLO METHODS IN PHYSICS AND CHEMISTRY, 1999, 525 : 247 - 261
  • [7] A spectral-based Monte Carlo algorithm for generating samples of nonstationary Gaussian processes
    Grigoriu, M.
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2010, 16 (02): : 143 - 165
  • [8] Extending Monte Carlo samples
    Beard, BB
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2003, 119 : 1012 - 1014
  • [9] Stitching Monte Carlo samples
    Ehataht, Karl
    Veelken, Christian
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (05):
  • [10] Stitching Monte Carlo samples
    Karl Ehatäht
    Christian Veelken
    [J]. The European Physical Journal C, 82