(a, d)-Diversity: Privacy Protection Based on l-Diversity

被引:8
|
作者
Wang, Qian [1 ]
Shi, Xiangling [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400030, Peoples R China
关键词
D O I
10.1109/WCSE.2009.362
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In recent years, privacy protection has been emphasized while publishing data with sensitive information Existing proposals for privacy protection can well avoid identity disclosure, however they do not provide sufficient protection for privacy under background knowledge attack This paper analyzes the cause of attribute disclosure and proposes a novel idea for privacy protection based on l-Diversity It takes the semantic meaning of the sensitive attributes into consideration and gives a stronger definition of privacy protection First, the sensitive attribute values are divided into groups, and then the records are grouped according to the sensitive attribute. Finally, the table is anonymized. The experiment results shown in the paper demonstrate the feasibility of the proposal.
引用
收藏
页码:367 / 372
页数:6
相关论文
共 50 条
  • [1] Location Privacy Protection in Mobile Social Networks Based on l-diversity
    Li, Hong-Tao
    Gong, Lin-Xia
    Guo, Feng
    Miao, Quan-Li
    Wang, Jie
    Zhang, Tao
    [J]. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2020, 36 (04) : 745 - 763
  • [2] An Enhanced l-Diversity Privacy Preservation
    Yang, Gaoming
    Li, Jingzhao
    Zhang, Shunxiang
    Yu, Li
    [J]. 2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, : 1115 - 1120
  • [3] Privacy Risk Diagnosis: Mining l-Diversity
    Zare-Mirakabad, Mohammad-Reza
    Jantan, Aman
    Bressan, Stephane
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2009, 5667 : 216 - +
  • [4] Protecting User Privacy Better with Query l-Diversity
    Liu, Fuyu
    Hua, Kien
    [J]. INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2010, 4 (02) : 1 - 18
  • [5] Sensitive attribute privacy preservation of trajectory data publishing based on l-diversity
    Yao, Lin
    Chen, Zhenyu
    Hu, Haibo
    Wu, Guowei
    Wu, Bin
    [J]. DISTRIBUTED AND PARALLEL DATABASES, 2021, 39 (03) : 785 - 811
  • [6] Sensitive attribute privacy preservation of trajectory data publishing based on l-diversity
    Lin Yao
    Zhenyu Chen
    Haibo Hu
    Guowei Wu
    Bin Wu
    [J]. Distributed and Parallel Databases, 2021, 39 : 785 - 811
  • [7] Anonymization of Daily Activity Data by Using l-diversity Privacy Model
    Parameshwarappa, Pooja
    Chen, Zhiyuan
    Koru, Gunes
    [J]. ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2021, 12 (03)
  • [8] Privacy-Preserving Data Publication with Features of Independent l-Diversity
    Zhu, Hong
    Tian, Shengli
    Lue, Kevin
    [J]. COMPUTER JOURNAL, 2015, 58 (04): : 549 - 571
  • [9] Automated k-Anonymization and l-Diversity for Shared Data Privacy
    Kayem, Anne V. D. M.
    Vester, C. T.
    Meinel, Christoph
    [J]. DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2016, PT I, 2016, 9827 : 105 - 120
  • [10] On the Complexity of the l-diversity Problem
    Dondi, Riccardo
    Mauri, Giancarlo
    Zoppis, Italo
    [J]. MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2011, 2011, 6907 : 266 - 277