Cauchy-Gaussian pigeon-inspired optimisation for electromagnetic inverse problem

被引:0
|
作者
Huo, Mengzhen [1 ]
Deng, Yimin [1 ]
Duan, Haibin [1 ,2 ]
机构
[1] Beihang Univ BUAA, Sch Automat Sci & Elect Engn, Beijing 100083, Peoples R China
[2] Peng Cheng Lab, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
pigeon-inspired optimisation; PIO; electromagnetic inverse problem; Loney's solenoid problem; Cauchy distribution; Gaussian distribution; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The optimisation of electromagnetic inverse problems could be attributed to a constraint nonlinear programming problem. Loney's solenoid problem is one of the electromagnetic inverse benchmarks in the magnetic field. Parameters such as the structure and medium are necessary to be designed based on the required magnetic properties. In this paper, an improved variant of pigeon-inspired optimisation (PIO) algorithm based on Cauchy distribution and Gaussian distribution, named Cauchy-Gaussian pigeon-inspired optimisation (CGPIO), is proposed to solve electromagnetic inverse problems. The PIO algorithm is a bio-inspired swarm intelligence optimisation algorithm, which imitates the homing process of pigeons. To improve the convergence efficiency of the basic PIO algorithm, two operators including Cauchy distribution and Gaussian distribution are utilised. Comparative results show the suitability and superiority of CGPIO algorithm for electromagnetic optimisation.
引用
收藏
页码:182 / 188
页数:7
相关论文
共 27 条
  • [1] Cauchy-Gaussian pigeon-inspired optimisation for electromagnetic inverse problem
    Huo, Mengzhen
    Deng, Yimin
    Duan, Haibin
    [J]. International Journal of Bio-Inspired Computation, 2021, 17 (03): : 182 - 188
  • [2] An improved pigeon-inspired optimisation for continuous function optimisation problems
    Ding, Guoshen
    Dong, Fengzhong
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2023, 17 (03) : 207 - 219
  • [3] An Improved Gaussian Pigeon-inspired Optimization Algorithm
    He, Jiahao
    Liu, Yanbin
    Chen, Boyi
    Yi, Chunlun
    [J]. 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 3270 - 3276
  • [4] Dynamic multi-swarm pigeon-inspired optimisation
    Tang, Yichao
    Wei, Bo
    Zhang, Yinglong
    Li, Xiong
    Xia, Xuewen
    Gui, Ling
    [J]. INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2021, 13 (03) : 267 - 282
  • [5] Binary Optimisation with an Urban Pigeon-Inspired Swarm Algorithm
    Rojas-Galeano, Sergio
    [J]. APPLIED COMPUTER SCIENCES IN ENGINEERING (WEA 2019), 2019, 1052 : 190 - 201
  • [6] An improved discrete pigeon-inspired optimisation algorithm for flexible job shop scheduling problem
    Wu, Xiuli
    Shen, Xianli
    Zhao, Ning
    Wu, Shaomin
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2020, 16 (03) : 181 - 194
  • [7] Flight control system design using adaptive pigeon-inspired optimisation
    Mohamed, Mostafa S.
    Duan, Haibin
    [J]. INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2020, 16 (03) : 133 - 147
  • [8] An Improved Pigeon-Inspired Optimisation Algorithm and Its Application in Parameter Inversion
    Liu, Hanmin
    Yan, Xuesong
    Wu, Qinghua
    [J]. SYMMETRY-BASEL, 2019, 11 (10):
  • [9] Gaussian pigeon-inspired optimization approach to orbital spacecraft formation reconfiguration
    Zhang Shujian
    Duan Haibin
    [J]. Chinese Journal of Aeronautics., 2015, 28 (01) - 205
  • [10] Gaussian pigeon-inspired optimization approach to orbital spacecraft formation reconfiguration
    Zhang Shujian
    Duan Haibin
    [J]. CHINESE JOURNAL OF AERONAUTICS, 2015, 28 (01) : 200 - 205