DNA computing of solutions to knapsack problems

被引:23
|
作者
Henkel, Christiaan V.
Back, Thomas
Kok, Joost N.
Rozenberg, Grzegorz
Spaink, Herman P.
机构
[1] Leiden State Univ, Inst Biol, NL-2333 AL Leiden, Netherlands
[2] Leiden State Univ, Leiden Inst Adv Comp Sci, NL-2333 AL Leiden, Netherlands
关键词
DNA computing; aqueous computing; knapsack problem;
D O I
10.1016/j.biosystems.2006.06.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
One line of DNA computing research focuses on parallel search algorithms, which can be used to solve many optimization problems. DNA in solution can provide an enormous molecular library, which can be searched by molecular biological techniques. We have implemented such a parallel search for solutions to knapsack problems, which ask for the best way to pack a knapsack of limited volume. Several instances of knapsack problems were solved using DNA. We demonstrate how the computations can be extended by in vivo translation of the DNA library into protein. This combination of DNA and protein allows for multi-criterion optimization. The knapsack computations performed can then be seen as protein optimizations, one of the most complex computations performed by natural systems. (c) 2006 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:156 / 162
页数:7
相关论文
共 50 条
  • [1] Computing and Selecting ε-Efficient Solutions of {0,1}-Knapsack Problems
    Tantar, Emilia
    Schuetze, Oliver
    Figueira, Jose Rui
    Coello, Carlos A. Coello
    Talbi, El-Ghazali
    [J]. MULTIPLE CRITERIA DECISION MAKING FOR SUSTAINABLE ENERGY AND TRANSPORTATION SYSTEMS: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON MULTIPLE CRITERIA DECISION MAKING, 2010, 634 : 378 - 388
  • [2] Computing knapsack solutions with cardinality robustness
    Naonori Kakimura
    Kazuhisa Makino
    Kento Seimi
    [J]. Japan Journal of Industrial and Applied Mathematics, 2012, 29 : 469 - 483
  • [3] Computing knapsack solutions with cardinality robustness
    Kakimura, Naonori
    Makino, Kazuhisa
    Seimi, Kento
    [J]. JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2012, 29 (03) : 469 - 483
  • [4] Computing Knapsack Solutions with Cardinality Robustness
    Kakimura, Naonori
    Makino, Kazuhisa
    Seimi, Kento
    [J]. ALGORITHMS AND COMPUTATION, 2011, 7074 : 693 - 702
  • [5] A DNA Computing Algorithm for Solving the Knapsack Problem
    Ye, Lian
    [J]. INFORMATION AND BUSINESS INTELLIGENCE, PT II, 2012, 268 : 84 - 90
  • [6] Determining the K-best solutions of knapsack problems
    Leao, Aline A. S.
    Cherri, Luiz H.
    Arenales, Marcos N.
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2014, 49 : 71 - 82
  • [7] Fixed–charge continuous knapsack problems and pseudogreedy solutions
    Josef Haberl
    [J]. Mathematical Programming, 1999, 85 : 617 - 642
  • [8] Search computing model for the knapsack problem based on DNA origami
    Yang, Jing
    Yin, Zhixiang
    Tang, Zhen
    Huang, Kaifeng
    Cui, Jianzhong
    Yang, Xinmu
    [J]. MATERIALS EXPRESS, 2019, 9 (06) : 553 - 562
  • [9] Computing surrogate constraints for multidimensional knapsack problems using evolution strategies
    Montana, Jose Luis
    Alonso, Cesar Luis
    Cagnoni, Stefano
    Callau, Mar
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2008, 4974 : 555 - +
  • [10] PROBLEMS, SOLUTIONS, AND SEMANTIC COMPUTING
    Sheu, Phillip C. -Y.
    Ramamoorthy, C. V.
    [J]. INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2009, 3 (03) : 383 - 394