Reversible Cellular Automata: From Fundamental Classical Results to Recent Developments

被引:24
|
作者
Kari, Jarkko [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku 20014, Finland
基金
芬兰科学院;
关键词
Cellular automaton; Reversible computation; Garden-of-Eden; Physical universality; Intrinsic universality; Time symmetry; Conservation laws; UNIVERSALITY; COMPUTATION; PHYSICS;
D O I
10.1007/s00354-018-0034-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A cellular automaton is a dynamical system on an infinite array of cells defined by a local update rule that is applied simultaneously at all cells. By carefully choosing the update rule, the global dynamics can be made information preserving. In this case, the cellular automaton is called reversible. In this article, we explain fundamental classical results concerning reversible cellular automata and discuss some more recent developments on selected topics. Classical results reviewed include the Curtis-Hedlund-Lyndon theorem, the Garden-of-Eden theorem and the invariance of uniform Bernoulli distribution under reversible cellular automata. We then describe several techniques to construct reversible cellular automata and a method to determine whether a given one-dimensional automaton is reversible. We present undecidability issues concerning reversible cellular automata and discuss three types of universality: computational universality, intrinsic universality, and physical universality. We finish with short notes about time symmetry, expansiveness, and conservation laws.
引用
收藏
页码:145 / 172
页数:28
相关论文
共 50 条
  • [1] Reversible Cellular Automata: From Fundamental Classical Results to Recent Developments
    Jarkko Kari
    [J]. New Generation Computing, 2018, 36 : 145 - 172
  • [2] How to Synchronize Cellular Automata - Recent Developments -
    Umeo, Hiroshi
    [J]. FUNDAMENTA INFORMATICAE, 2020, 171 (1-4) : 393 - 419
  • [3] Reversible cellular automata
    Kari, J
    [J]. DEVELOPMENTS IN LANGUAGE THEORY, PROCEEDINGS, 2005, 3572 : 57 - 68
  • [4] Magnetic Quantum-dot Cellular Automata: Recent developments and prospects
    Orlov, A.
    Imre, A.
    Csaba, G.
    Ji, L.
    Porod, W.
    Bernstein, G. H.
    [J]. JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2008, 3 (01) : 55 - 68
  • [5] The complexity of reversible cellular automata
    Sutner, K
    [J]. THEORETICAL COMPUTER SCIENCE, 2004, 325 (02) : 317 - 328
  • [6] Computation in reversible cellular automata
    Morita, Kenichi
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2012, 41 (06) : 569 - 581
  • [7] Cellular automata and artificial life - Computation and life in reversible cellular automata
    Morita, K
    [J]. COMPLEX SYSTEMS-BOOK, 2001, 6 : 151 - 200
  • [8] On Two Non-Ergodic Reversible Cellular Automata, One Classical, the Other Quantum
    Prosen, Tomaz
    [J]. ENTROPY, 2023, 25 (05)
  • [9] Robust control of uncertain systems: Classical results and recent developments
    Petersen, Ian R.
    Tempo, Roberto
    [J]. AUTOMATICA, 2014, 50 (05) : 1315 - 1335
  • [10] Emergent fundamental pedestrian flows from cellular automata microsimulation
    Blue, VJ
    Adler, JL
    [J]. TRAFFIC FLOW THEORY: SIMULATION MODELS, MACROSCOPIC FLOW RELATIONSHIPS, AND FLOW ESTIMATION AND PREDICTION, 1998, (1644): : 29 - 36