Research on Cs activation mechanism for Ga0.5Al0.5As(001) and GaN(0001) surface

被引:16
|
作者
Shen, Yang [1 ]
Chen, Liang [1 ,2 ]
Qian, Yunsheng [2 ]
Dong, Yanyan [1 ]
Zhang, Shuqin [1 ]
Wang, Meishan [3 ]
机构
[1] China Jiliang Univ, Inst Optoelect Technol, Hangzhou 310018, Zhejiang, Peoples R China
[2] NJUST, Inst Elect Engn & Optoelect Technol, Nanjing 210094, Jiangsu, Peoples R China
[3] Ludong Univ, Sch Informat & Elect Engn, Yantai 264025, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
First-principle; Cs adsorption; Work function; Dipole moment; Photocurrent; NEGATIVE ELECTRON-AFFINITY; OPTICAL-PROPERTIES; 1ST PRINCIPLES; GAAS-CS; PHOTOCATHODES; OXYGEN;
D O I
10.1016/j.apsusc.2014.10.088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Based on first-principle density functional theory (DFT), plane wave with ultrasoft pseudopotential method was used to calculate and compare the Cs activation mechanism for Ga0.5Al0.5As(0 0 1) surface and GaN( 0 0 0 1) surface. In this work, eight possible Cs adsorption sites are chosen for the Ga0.5Al0.5As(0 0 1) surface while five high-symmetry sites are considered in the calculation model of GaN(0 0 0 1) surface. Results show that Cs adsorption lowers the surface work function and benefits to get the most stable adsorption sites. Then dipole moment with different Cs coverage on two surfaces is investigated. The dipole moment decreases with the increase of Cs coverage and GaN(0 0 0 1) surface changes more obviously than Ga0.5Al0.5As(0 0 1) surface. The repulsion between Cs atomic dipole-dipole is enhanced and it causes depolarization and work function rising again. Finally, an activation experiment is performed to verify the result of our calculations, GaN photocathodes gets the minimum work function earlier than Ga0.5Al0.5As photocathodes. (C) 2014 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:300 / 303
页数:4
相关论文
共 50 条
  • [1] Comparison of Cs adsorption on GaAs (100), Ga0.5Al0.5As (001) and GaN (0001) surfaces
    Su, Lingai
    Chen, Liang
    Shen, Yang
    He, Minyou
    Xu, Sunan
    OPTIK, 2016, 127 (11): : 4834 - 4838
  • [2] Comparative Research on Cs Activation Mechanism for Al0.5Ga0.5As (001) and Al0.25Ga0.75N (0001) Surface
    Shen, Yang
    Chen, Liang
    Su, Lingai
    Qian, Yunsheng
    Xu, Sunan
    Zhang, Shuqin
    IEEE SENSORS JOURNAL, 2015, 15 (09) : 5252 - 5257
  • [3] Cs adsorption on Ga0.5Al0.5As(001)β2 (2 x 4) surface: A first-principles research
    Yu, Xiaohua
    Chang, Benkang
    Chen, Xinlong
    Xu, Yuan
    Wang, Honggang
    Wang, Meishan
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 84 : 226 - 231
  • [4] The adsorption of Cs and residual gases on Ga0.5Al0.5As (001) β2 (2 x 4) surface: A first principles research
    Yu, Xiaohua
    Du, Yujie
    Chang, Benkang
    Wang, Honggang
    Wang, Meishan
    APPLIED SURFACE SCIENCE, 2014, 290 : 142 - 147
  • [5] Geometric and electronic structure of Cs adsorbed Ga0.5Al0.5As (001) and (011) surfaces: a first principles research
    X. H. Yu
    B. K. Chang
    H. G. Wang
    M. S. Wang
    Journal of Materials Science: Materials in Electronics, 2014, 25 : 2595 - 2600
  • [6] Geometric and electronic structure of Cs adsorbed Ga0.5Al0.5As (001) and (011) surfaces: a first principles research
    Yu, X. H.
    Chang, B. K.
    Wang, H. G.
    Wang, M. S.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2014, 25 (06) : 2595 - 2600
  • [7] Cs,O coadsorption on Al0.5Ga0.5N(0001) surface
    Ji, Yanjun
    Bian, Li
    Liu, Ni
    Wang, Junping
    Wang, Caifeng
    Du, Yujie
    Liu, Youwen
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 138
  • [8] Electronic structure of Cs adsorption on Al0.5Ga0.5N(0001) surface
    Ji, Yanjun
    Bian, Li
    Liu, Ni
    Liu, Youwen
    Du, Yujie
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 119
  • [9] Adsorption of Cs on Al0.5Ga0.5N(0001) surface doped with Mg
    Yanjun Ji
    Junping Wang
    Yujie Du
    The European Physical Journal B, 2023, 96
  • [10] Adsorption of Cs on Al0.5Ga0.5N(0001) surface doped with Mg
    Ji, Yanjun
    Wang, Junping
    Du, Yujie
    EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (05):