Maximum likelihood and two-step estimation of an ordered-probit selection model

被引:55
|
作者
Chiburis, Richard [1 ]
Lokshin, Michael
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] World Bank, Dev Econ Res Grp, Washington, DC 20433 USA
来源
STATA JOURNAL | 2007年 / 7卷 / 02期
关键词
st0123; oheckman; selection bias; ordered probit; maximum likelihood;
D O I
10.1177/1536867X0700700202
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
We discuss the estimation of a regression model with an ordered-probit selection rule. We have written a Stata command, oheckman, that computes two-step and full-information rnaximum-likelihood estimates of this model. Using Monte Carlo simulations, we compare the performances of these estimators under various conditions.
引用
收藏
页码:167 / 182
页数:16
相关论文
共 50 条