Two-dimensional iterated torus knots and quasi-ordinary surface singularities

被引:3
|
作者
Popescu-Pampu, P [1 ]
机构
[1] Univ Paris 07, Inst Math, UMR CNRS 7586, Equipe Geometrie & Dynam, F-75251 Paris 05, France
关键词
D O I
10.1016/S1631-073X(03)00099-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a notion of 2-dimensional iterated torus knot, namely special embeddings of a 2-torus in the Cartesian product of a 2-torus and a 2-disc. We apply this definition to give a description of the embedded topology of the boundary of an irreducible quasi-ordinary hypersurface germ of dimension 2, in terms of the characteristic exponents of an arbitrary quasi-ordinary projection. Incidentally, we give an algorithm for computing the Jung-Hirzebruch type of its normalization. To cite this article: P. Popescu-Pampu, C. R. Acad. Sci. Paris, Ser. 1336 (2003). (C) 2003 Academie des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:651 / 656
页数:6
相关论文
共 50 条