Flat covers in abelian and in non-abelian categories

被引:16
|
作者
Rump, Wolfgang [1 ]
机构
[1] Univ Stuttgart, Inst Algebra & Number Theory, D-70550 Stuttgart, Germany
关键词
Flat cover; Pure exact sequence; Left exact category; Locally finitely presented; Quasi-abelian; Grothendieck category; Ramsey theory; ENVELOPES; COMPLEXES;
D O I
10.1016/j.aim.2010.03.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general existence theorem for flat covers in (e.g., quasi-abelian) locally finitely presented categories is obtained from an additive Ramsey type theorem. In the abelian case, it is shown that flat covers always exist. Applications to categories of separated presheaves or sheaves, localizations of Bousfield type, torsion-free classes of finite type, and categories of filtered objects or complexes, are given. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1589 / 1615
页数:27
相关论文
共 50 条
  • [1] SOME PROPERTIES OF NON-ABELIAN CATEGORIES
    GRILLET, PA
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (11): : 550 - &
  • [2] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    [J]. PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [3] Signature invariants of links from irregular covers and non-abelian covers
    Cha, JC
    Ko, KH
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 : 67 - 81
  • [4] Non-abelian and ε-curved homological algebra with arrow categories
    Fritz, Tobias
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (06)
  • [5] The quintessence with Abelian and non-Abelian symmetry
    Li, XZ
    Hao, JG
    Liu, DJ
    Zhai, XH
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (32): : 5921 - 5930
  • [6] Abelian and non-Abelian Weyl gravitoelectromagnetism
    Ramos, J.
    de Montigny, M.
    Khanna, F. C.
    [J]. ANNALS OF PHYSICS, 2020, 418
  • [7] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    [J]. PHYSICAL REVIEW E, 2013, 87 (05):
  • [8] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    [J]. PHYSICAL REVIEW D, 2003, 68 (05)
  • [9] Abelian and Non-Abelian Triangle Mysteries
    Mitchell, Lon
    Jones, Michael A.
    Shelton, Brittany
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (08): : 808 - 813
  • [10] HOW NON-ABELIAN IS NON-ABELIAN GAUGE-THEORY
    CRABB, MC
    SUTHERLAND, WA
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183): : 279 - 290