Intrinsic geometry of quantum adiabatic evolution and quantum phase transitions

被引:68
|
作者
Rezakhani, A. T. [1 ,2 ]
Abasto, D. F. [2 ,3 ]
Lidar, D. A. [1 ,2 ,3 ,4 ]
Zanardi, P. [2 ,3 ]
机构
[1] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Phys, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 01期
基金
美国国家科学基金会;
关键词
STATISTICAL DISTANCE; COMPUTATION; ALGORITHM;
D O I
10.1103/PhysRevA.82.012321
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We elucidate the geometry of quantum adiabatic evolution. By minimizing the deviation from adiabaticity, we find a Riemannian metric tensor underlying adiabatic evolution. Equipped with this tensor, we identify a unified geometric description of quantum adiabatic evolution and quantum phase transitions that generalizes previous treatments to allow for degeneracy. The same structure is relevant for applications in quantum information processing, including adiabatic and holonomic quantum computing, where geodesics over the manifold of control parameters correspond to paths which minimize errors. We illustrate this geometric structure with examples, for which we explicitly find adiabatic geodesics. By solving the geodesic equations in the vicinity of a quantum critical point, we identify universal characteristics of optimal adiabatic passage through a quantum phase transition. In particular, we show that in the vicinity of a critical point describing a second-order quantum phase transition, the geodesic exhibits power-law scaling with an exponent given by twice the inverse of the product of the spatial and scaling dimensions.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Geometry of quantum phase transitions
    Carollo, Angelo
    Valenti, Davide
    Spagnolo, Bernardo
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2020, 838 : 1 - 72
  • [2] Adiabatic preparation without quantum phase transitions
    Schaller, Gernot
    [J]. PHYSICAL REVIEW A, 2008, 78 (03):
  • [3] Quantum information-geometry of dissipative quantum phase transitions
    Banchi, Leonardo
    Giorda, Paolo
    Zanardi, Paolo
    [J]. PHYSICAL REVIEW E, 2014, 89 (02):
  • [4] Bounding first-order quantum phase transitions in adiabatic quantum computing
    Werner, Matthias
    Garcia-Saez, Artur
    Estarellas, Marta P.
    [J]. PHYSICAL REVIEW RESEARCH, 2023, 5 (04):
  • [5] Adiabatic quantum algorithms as quantum phase transitions:: First versus second order
    Schuetzhold, Ralf
    Schaller, Gernot
    [J]. PHYSICAL REVIEW A, 2006, 74 (06):
  • [6] Adiabatic quantum computation and quantum phase transitions -: art. no. 062302
    Latorre, JI
    Orús, R
    [J]. PHYSICAL REVIEW A, 2004, 69 (06) : 062302 - 1
  • [7] QUANTUM TRANSITIONS IN THE ADIABATIC APPROXIMATION
    DYKHNE, AM
    [J]. SOVIET PHYSICS JETP-USSR, 1960, 11 (02): : 411 - 415
  • [8] HISTORIES OF ADIABATIC QUANTUM TRANSITIONS
    BERRY, MV
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 429 (1876): : 61 - 72
  • [9] New Dynamical Scaling Universality for Quantum Networks Across Adiabatic Quantum Phase Transitions
    Acevedo, O. L.
    Quiroga, L.
    Rodriguez, F. J.
    Johnson, N. F.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (03)
  • [10] Quantum Adiabatic Algorithm and Scaling of Gaps at First-Order Quantum Phase Transitions
    Laumann, C. R.
    Moessner, R.
    Scardicchio, A.
    Sondhi, S. L.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (03)