Emotion Detection Framework for Twitter Data Using Supervised Classifiers

被引:23
|
作者
Suhasini, Matla [1 ]
Srinivasu, Badugu [1 ]
机构
[1] SCETW, Hyderabad, India
关键词
Tweets; Emotion detection; Natural language processing; Machine learning; CIRCUMPLEX MODEL;
D O I
10.1007/978-981-15-1097-7_47
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
"The task of emotion detection usually involves the analysis of text. Humans show universal consistency in identifying emotions however shows an excellent deal of variation between individuals in their abilities." We have detected the emotion for Twitter messages as they provide rich ensemble of human emotions. We have used machine learning algorithms namely Naive Bayes (NB) and k-nearest neighbor algorithm (KNN) to detect the emotion of Twitter message and then classify the Twitter messages into four emotional categories. We also made a comparative study of two supervised machine learning algorithms; the eager learning classifier (NB) performed well when compared with lazy learning classifier (KNN).
引用
收藏
页码:565 / 576
页数:12
相关论文
共 50 条
  • [1] Comparative Analysis Of Twitter Data Using Supervised Classifiers
    Joshi, Rohit
    Tekchandani, Rajkumar
    [J]. 2016 INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT), VOL 3, 2015, : 374 - 379
  • [2] Rumor Detection on Twitter Using a Supervised Machine Learning Framework
    Thakur, Hardeo Kumar
    Gupta, Anand
    Bhardwaj, Ayushi
    Verma, Devanshi
    [J]. INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2018, 8 (03) : 1 - 13
  • [3] Improvised spam detection in twitter data using lightweight detectors and classifiers
    Velammal, B.L.
    Aarthy, N.
    [J]. International Journal of Web-Based Learning and Teaching Technologies, 2021, 16 (04) : 12 - 32
  • [4] An Anomaly Detection Framework for Twitter Data
    Kumar, Sandeep
    Khan, Muhammad Badruddin
    Abul Hasanat, Mozaherul Hoque
    Saudagar, Abdul Khader Jilani
    AlTameem, Abdullah
    AlKhathami, Mohammed
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [5] Cascading Classifiers for Twitter Sentiment Analysis with Emotion Lexicons
    Calvo, Hiram
    Juarez Gambino, Omar
    [J]. COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, (CICLING 2016), PT II, 2018, 9624 : 270 - 280
  • [6] Automobile Insurance Fraud Detection using Supervised Classifiers
    Prasasti, Iffa Maula Nur
    Dhini, Arian
    Laoh, Enrico
    [J]. 2020 5TH INTERNATIONAL WORKSHOP ON BIG DATA AND INFORMATION SECURITY (IWBIS 2020), 2020, : 49 - 53
  • [7] Automatic emotion detection in text streams by analyzing Twitter data
    Hasan, Maryam
    Rundensteiner, Elke
    Agu, Emmanuel
    [J]. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2019, 7 (01) : 35 - 51
  • [8] Automatic emotion detection in text streams by analyzing Twitter data
    Maryam Hasan
    Elke Rundensteiner
    Emmanuel Agu
    [J]. International Journal of Data Science and Analytics, 2019, 7 : 35 - 51
  • [9] Emotion Analysis of Twitter Data Using Hashtag Emotions
    Goel, Prerna
    Thareja, Reema
    [J]. APPLICATIONS OF COMPUTING AND COMMUNICATION TECHNOLOGIES, ICACCT 2018, 2018, 899 : 88 - 98
  • [10] Exploring the mel scale features using supervised learning classifiers for emotion classification
    Rangra, Kalpana
    Kapoor, Monit
    [J]. INTERNATIONAL JOURNAL OF APPLIED PATTERN RECOGNITION, 2021, 6 (03) : 232 - 253