Galilean covariant Lagrangian models

被引:47
|
作者
Santos, ES [1 ]
de Montigny, M
Khanna, FC
Santana, AE
机构
[1] Univ Alberta, Inst Theoret Phys, Edmonton, AB T6G 2J1, Canada
[2] Univ Estadual Paulista, Inst Fis Teor, BR-01405900 Sao Paulo, Brazil
[3] Univ Alberta, Fac St Jean, Edmonton, AB T6C 4G9, Canada
[4] TRIUMF, Vancouver, BC V6T 2A3, Canada
[5] Univ Brasilia, Inst Fis, BR-70910900 Brasilia, DF, Brazil
来源
关键词
D O I
10.1088/0305-4470/37/41/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct non-relativistic Lagrangian field models by enforcing Galilean covariance with a (4, 1) Minkowski manifold followed by a projection onto the (3, 1) Newtonian spacetime. We discuss scalar, Fermi and gauge fields, as well as interactions between these fields, preparing the stage for their quantization. We show that the Galilean covariant formalism provides an elegant construction of the Lagrangians which describe the electric and magnetic limits of Galilean electromagnetism. Similarly we obtain non-relativistic limits for the Proca field. Then we study Dirac Lagrangians and retrieve the Levy-Leblond wave equations when the Fermi field interacts with an Abelian gauge field.
引用
收藏
页码:9771 / 9789
页数:19
相关论文
共 50 条
  • [1] Galilean electrodynamics: covariant formulation and Lagrangian
    Aditya Mehra
    Yaman Sanghavi
    [J]. Journal of High Energy Physics, 2021
  • [2] Galilean electrodynamics: covariant formulation and Lagrangian
    Mehra, Aditya
    Sanghavi, Yaman
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (09)
  • [3] On Galilei-covariant lagrangian models of fluids
    de Montigny, M
    Khanna, FC
    Santana, AE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (49): : 10921 - 10937
  • [4] Covariant master theory for novel Galilean invariant models and massive gravity
    Gabadadze, Gregory
    Hinterbichler, Kurt
    Khoury, Justin
    Pirtskhalava, David
    Trodden, Mark
    [J]. PHYSICAL REVIEW D, 2012, 86 (12):
  • [5] Galilean covariant models of bosons coupled to a Chern-Simons gauge field
    Abreu, LM
    de Montigny, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (45): : 9877 - 9890
  • [6] Decoherence rates for Galilean covariant dynamics
    Clark, Jeremy
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (05)
  • [7] Galilean invariance in Lagrangian mechanics
    Mohallem, J. R.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2015, 83 (10) : 857 - 860
  • [8] Canonical quantization of Galilean covariant field theories
    Santos, ES
    de Montigny, M
    Khanna, FC
    [J]. ANNALS OF PHYSICS, 2005, 320 (01) : 21 - 55
  • [9] Spin and statistics in Galilean covariant field theory
    Hagen, CR
    [J]. PHYSICAL REVIEW A, 2004, 70 (01): : 012101 - 1
  • [10] FORM OF THE MANIFESTLY COVARIANT LAGRANGIAN
    JOHNS, OD
    [J]. AMERICAN JOURNAL OF PHYSICS, 1985, 53 (10) : 982 - 988