ONLINE TENSOR LOW-RANK REPRESENTATION FOR STREAMING DATA

被引:0
|
作者
Wu, Tong [1 ]
机构
[1] Rutgers Univ New Brunswick, Dept Elect & Comp Engn, New Brunswick, NJ 08854 USA
关键词
Clustering; online learning; tensor low-rank representation;
D O I
10.1109/mlsp49062.2020.9231620
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new streaming algorithm to learn low-rank structures of tensor data using the recently proposed tensor-tensor product (t-product) and tensor singular value decomposition (t-SVD) algebraic framework. It reformulates the tensor low-rank representation (TLRR) problem using the equivalent bifactor model of the tensor nuclear norm, where the tensor dictionary is updated based on the newly collected data and representations. Compared to TLRR, the proposed method processes tensor data in an online fashion and makes the memory cost independent of the data size. Experimental results on three benchmark datasets demonstrate the superior performance, efficiency and robustness of the proposed algorithm over state-of-the-art methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Online Tensor Low-Rank Representation for Streaming Data Clustering
    Wu, Tong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 602 - 617
  • [2] Online Robust Low-Rank Tensor Modeling for Streaming Data Analysis
    Li, Ping
    Feng, Jiashi
    Jin, Xiaojie
    Zhang, Luming
    Xu, Xianghua
    Yan, Shuicheng
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (04) : 1061 - 1075
  • [3] Imputation of Streaming Low-Rank Tensor Data
    Mardani, Morteza
    Mateos, Gonzalo
    Giannakis, Georgios B.
    [J]. 2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 433 - 436
  • [4] Tensor Low-Rank Representation for Data Recovery and Clustering
    Zhou, Pan
    Lu, Canyi
    Feng, Jiashi
    Lin, Zhouchen
    Yan, Shuicheng
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (05) : 1718 - 1732
  • [5] Low-Rank Tucker Approximation of a Tensor from Streaming Data
    Sun, Yiming
    Guo, Yang
    Luo, Charlene
    Tropp, Joel
    Udell, Madeleine
    [J]. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (04): : 1123 - 1150
  • [6] Online Robust Low-Rank Tensor Learning
    Li, Ping
    Feng, Jiashi
    Jin, Xiaojie
    Zhang, Luming
    Xu, Xianghua
    Yan, Shuicheng
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2180 - 2186
  • [7] Tensor low-rank sparse representation for tensor subspace learning
    Du, Shiqiang
    Shi, Yuqing
    Shan, Guangrong
    Wang, Weilan
    Ma, Yide
    [J]. NEUROCOMPUTING, 2021, 440 : 351 - 364
  • [8] Low-Rank Tensor Completion Method for Implicitly Low-Rank Visual Data
    Ji, Teng-Yu
    Zhao, Xi-Le
    Sun, Dong-Lin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1162 - 1166
  • [9] Low-Rank Tensor Function Representation for Multi-Dimensional Data Recovery
    Luo, Yisi
    Zhao, Xile
    Li, Zhemin
    Ng, Michael K.
    Meng, Deyu
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 3351 - 3369
  • [10] Low-Rank Representation for Incomplete Data
    Shi, Jiarong
    Yang, Wei
    Yong, Longquan
    Zheng, Xiuyun
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014