Hom-structures on simple graded Lie algebras of finite growth

被引:7
|
作者
Xie, Wenjuan [1 ]
Liu, Wende [1 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Peoples R China
基金
中国国家自然科学基金;
关键词
Hom-structure; simple graded Lie algebra; finite growth; Jordan algebra; CENTRAL EXTENSIONS; DERIVATIONS; DEFORMATIONS;
D O I
10.1142/S0219498817501547
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Hom-structure on a Lie algebra (g, [,]) is a linear map sigma : g -> g satisfying the Hom-Jacobi identity: [sigma(x), [y, z]] + [sigma(y), [z, x]] + [sigma(z), [x, y]] = 0 for all x, y, z is an element of g. A Hom-structure is referred to as multiplicative if it is also a Lie algebra homomorphism. In this paper, using a classification theorem due to Mathieu, we determine explicitly all the Hom-structures on the simple graded Lie algebras of finite growth. As a direct consequence, all the Hom-structures on any simple graded Lie algebras of finite growth constitute a Jordan algebra in the usual way.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Hom-structures on semi-simple Lie algebras
    Xie, Wenjuan
    Jin, Quanqin
    Liu, Wende
    [J]. OPEN MATHEMATICS, 2015, 13 : 617 - 630
  • [2] Hom-structures on finite-dimensional simple Lie superalgebras
    Yuan, Jixia
    Liu, Wende
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (06)
  • [3] GENERATORS OF SIMPLE GRADED LIE ALGEBRAS OF FINITE GROWTH
    Tang, Liming
    Liu, Wende
    [J]. COLLOQUIUM MATHEMATICUM, 2017, 148 (02) : 315 - 324
  • [4] CLASSIFICATION OF SIMPLE GRADED LIE-ALGEBRAS OF FINITE GROWTH
    MATHIEU, O
    [J]. INVENTIONES MATHEMATICAE, 1992, 108 (03) : 455 - 519
  • [5] Regular Hom-Lie structures on Borel subalgebras of finite-dimensional simple Lie algebras
    Chen, Zhengxin
    Yu, Yalong
    [J]. COMMUNICATIONS IN ALGEBRA, 2020, 48 (05) : 2065 - 2071
  • [6] Hom-Lie algebra structures on semi-simple Lie algebras
    Jin, Quanqin
    Li, Xiaochao
    [J]. JOURNAL OF ALGEBRA, 2008, 319 (04) : 1398 - 1408
  • [7] On the Structures of Hom-Lie Algebras
    Shengxiang WANG
    Xiaohui ZHANG
    [J]. Journal of Mathematical Research with Applications, 2014, 34 (04) : 459 - 466
  • [8] Graded simple Lie algebras and graded simple representations
    Mazorchuk, Volodymyr
    Zhao, Kaiming
    [J]. MANUSCRIPTA MATHEMATICA, 2018, 156 (1-2) : 215 - 240
  • [9] Graded simple Lie algebras and graded simple representations
    Volodymyr Mazorchuk
    Kaiming Zhao
    [J]. manuscripta mathematica, 2018, 156 : 215 - 240
  • [10] Representations of Simple Hom-Lie Algebras
    Agrebaoui, Boujemaa
    Benali, Karima
    Makhlouf, Abdenacer
    [J]. JOURNAL OF LIE THEORY, 2019, 29 (04) : 1119 - 1135