HIGHER ORDER AUTOMATIC DIFFERENTIATION OF HIGHER ORDER FUNCTIONS

被引:5
|
作者
Huot, Mathieu [1 ]
Staton, Sam [1 ]
Vakar, Matthijs [2 ]
机构
[1] Univ Oxford, Oxford, England
[2] Univ Utrecht, Utrecht, Netherlands
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
automatic differentiation; software correctness; denotational semantics;
D O I
10.46298/LMCS-18(1:41)2022
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present semantic correctness proofs of automatic differentiation (AD). We consider a forward-mode AD method on a higher order language with algebraic data types, and we characterise it as the unique structure preserving macro given a choice of derivatives for basic operations. We describe a rich semantics for differentiable programming, based on diffeological spaces. We show that it interprets our language, and we phrase what it means for the AD method to be correct with respect to this semantics. We show that our characterisation of AD gives rise to an elegant semantic proof of its correctness based on a gluing construction on diffeological spaces. We explain how this is, in essence, a logical relations argument. Throughout, we show how the analysis extends to AD methods for computing higher order derivatives using a Taylor approximation.
引用
收藏
页码:41:1 / 41:34
页数:34
相关论文
共 50 条
  • [1] Higher-order automatic differentiation of mathematical functions
    Charpentier, Isabelle
    Dal Cappello, Claude
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2015, 189 : 66 - 71
  • [2] Automatic testing of higher order functions
    Koopman, Pieter
    Plasmeijer, Rinus
    [J]. PROGRAMMING LANGUAGES AND SYSTEMS, PROCEEDINGS, 2006, 4279 : 148 - +
  • [3] Arbogast: Higher order automatic differentiation for special functions with Modular C
    Charpentier, Isabelle
    Gustedt, Jens
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2018, 33 (4-6): : 963 - 987
  • [4] Perturbation confusion in forward automatic differentiation of higher-order functions
    Manzyuk, Oleksandr
    Pearlmutter, Barak A.
    Radul, Alexey Andreyevich
    Rush, David R.
    Siskind, Jeffrey Mark
    [J]. JOURNAL OF FUNCTIONAL PROGRAMMING, 2019, 29
  • [5] Higher order automatic differentiation with dual numbers
    Szirmay-Kalos, László
    [J]. Szirmay-Kalos, László (szirmay@iit.bme.hu), 1600, Budapest University of Technology and Economics (65): : 1 - 10
  • [6] Higher-order reverse automatic differentiation with emphasis on the third-order
    Gower, R. M.
    Gower, A. L.
    [J]. MATHEMATICAL PROGRAMMING, 2016, 155 (1-2) : 81 - 103
  • [7] Higher-order reverse automatic differentiation with emphasis on the third-order
    R. M. Gower
    A. L. Gower
    [J]. Mathematical Programming, 2016, 155 : 81 - 103
  • [8] Higher order invex functions and higher order pseudoinvex ones
    Ivanov, Vsevolod I.
    [J]. APPLICABLE ANALYSIS, 2013, 92 (10) : 2152 - 2167
  • [9] Optimized higher-order automatic differentiation for the Faddeeva function
    Charpentier, Isabelle
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2016, 205 : 132 - 137
  • [10] Probabilistic higher order differential attack and higher order bent functions
    Iwata, T
    Kurosawa, K
    [J]. ADVANCES IN CRYPTOLOGY - ASIACRYPT'99, PROCEEDINGS, 1999, 1716 : 62 - 74