SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila

被引:50
|
作者
Zanon, Alessandra [1 ]
Kalvakuri, Sreehari [2 ]
Rakovic, Aleksandar [3 ]
Foco, Luisa [1 ]
Guida, Marianna [1 ]
Schwienbacher, Christine [1 ]
Serafin, Alice [1 ]
Rudolph, Franziska [3 ]
Trilck, Michaela [3 ]
Gruenewald, Anne [3 ,4 ]
Stanslowsky, Nancy [5 ]
Wegner, Florian [5 ]
Giorgio, Valentina [6 ]
Lavdas, Alexandros A. [1 ]
Bodmer, Rolf [2 ]
Pramstaller, Peter P. [1 ,7 ,8 ]
Klein, Christine [3 ]
Hicks, Andrew A. [1 ]
Pichler, Irene [1 ]
Seibler, Philip [3 ]
机构
[1] Univ Lubeck, Affiliated Inst, Eurac Res, Inst Biomed, I-39100 Bolzano, Italy
[2] Sanford Burnham Prebys Med Discovery Inst, Dev Aging & Regenerat Program, La Jolla, CA 92037 USA
[3] Univ Lubeck, Inst Neurogenet, Maria Goeppert Str 1, D-23562 Lubeck, Germany
[4] Univ Luxembourg, Mol & Funct Neurobiol Grp, Luxembourg Ctr Syst Biomed, L-4367 Belvaux, Luxembourg
[5] Hannover Med Sch, Dept Neurol, D-30625 Hannover, Germany
[6] Univ Padua, I-35122 Padua, Italy
[7] Gen Cent Hosp, Dept Neurol, I-39100 Bolzano, Italy
[8] Univ Lubeck, Dept Neurol, D-23562 Lubeck, Germany
基金
美国国家卫生研究院;
关键词
STOMATIN-LIKE PROTEIN-2; PLURIPOTENT STEM-CELLS; ALPHA-SYNUCLEIN ACCUMULATION; COMPLEX I DEFICIENCY; LOSS-OF-FUNCTION; DISEASE; PINK1; MITOPHAGY; CHAIN; MUTANT;
D O I
10.1093/hmg/ddx132
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of mitochondrial respiratory chain complex I activity have been observed in the substantia nigra of PD patients, and loss of Parkin results in the reduction of complex I activity shown in various cell and animal models. Using co-immunoprecipitation and proximity ligation assays on endogenous proteins, we demonstrate that Parkin interacts with mitochondrial Stomatin-like protein 2 (SLP-2), which also binds the mitochondrial lipid cardiolipin and functions in the assembly of respiratory chain proteins. SH-SY5Y cells with a stable knockdown of Parkin or SLP-2, as well as induced pluripotent stem cell-derived neurons from Parkin mutation carriers, showed decreased complex I activity and altered mitochondrial network morphology. Importantly, induced expression of SLP-2 corrected for these mitochondrial alterations caused by reduced Parkin function in these cells. In-vivo Drosophila studies showed a genetic interaction of Parkin and SLP-2, and further, tissue-specific or global overexpression of SLP-2 transgenes rescued parkin mutant phenotypes, in particular loss of dopaminergic neurons, mitochondrial network structure, reduced ATP production, and flight and motor dysfunction. The physical and genetic interaction between Parkin and SLP-2 and the compensatory potential of SLP-2 suggest a functional epistatic relationship to Parkin and a protective role of SLP-2 in neurons. This finding places further emphasis on the significance of Parkin for the maintenance of mitochondrial function in neurons and provides a novel target for therapeutic strategies.
引用
收藏
页码:2412 / 2425
页数:14
相关论文
共 12 条
  • [1] SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila (vol 26, pg 2412, 2017)
    Zanon, Alessandra
    Kalvakuri, Sreehari
    Rakovic, Aleksandar
    Foco, Luisa
    Guida, Marianna
    Schwienbacher, Christine
    Serafin, Alice
    Rudolph, Franziska
    Trilck, Michaela
    Gruenewald, Anne
    Stanslowsky, Nancy
    Wegner, Florian
    Giorgio, Valentina
    Lavdas, Alexandros A.
    Bodmer, Rolf
    Pramstaller, Peter P.
    Klein, Christine
    Hicks, Andrew A.
    Pichler, Irene
    Philip, Seibler
    HUMAN MOLECULAR GENETICS, 2019, 28 (07) : 1225 - 1225
  • [2] Defects in Mitochondrial Biogenesis Drive Mitochondrial Alterations in PARKIN-Deficient Human Dopamine Neurons
    Kumar, Manoj
    Acevedo-Cintron, Jesus
    Jhaldiyal, Aanishaa
    Wang, Hu
    Andrabi, Shaida A.
    Eacker, Stephen
    Karuppagounder, Senthilkumar S.
    Brahmachari, Saurav
    Chen, Rong
    Kim, Hyesoo
    Ko, Han Seok
    Dawson, Valina L.
    Dawson, Ted M.
    STEM CELL REPORTS, 2020, 15 (03): : 629 - 645
  • [3] Parkin Mutations Reduce the Complexity of Neuronal Processes in iPSC-Derived Human Neurons
    Ren, Yong
    Jiang, Houbo
    Hu, Zhixing
    Fan, Kevin
    Wang, Jun
    Janoschka, Stephen
    Wang, Xiaomin
    Ge, Shaoyu
    Feng, Jian
    STEM CELLS, 2015, 33 (01) : 68 - 78
  • [4] Parkin and PINK1 Patient iPSC-Derived Midbrain Dopamine Neurons Exhibit Mitochondrial Dysfunction and α-Synuclein Accumulation
    Chung, Sun Young
    Kishinevsky, Sarah
    Mazzulli, Joseph R.
    Graziotto, John
    Mrejeru, Ana
    Mosharov, Eugene V.
    Puspita, Lesly
    Valiulahi, Parvin
    Sulzer, David
    Milner, Teresa A.
    Taldone, Tony
    Krainc, Dimitri
    Studer, Lorenz
    Shim, Jae-Won
    STEM CELL REPORTS, 2016, 7 (04): : 664 - 677
  • [5] Intracellular delivery of Parkin-RING0-based fragments corrects Parkin-induced mitochondrial dysfunction through interaction with SLP-2
    Zanon, Alessandra
    Guida, Marianna
    Lavdas, Alexandros A.
    Corti, Corrado
    Rueda, Maria Paulina Castelo
    Negro, Alessandro
    Pramstaller, Peter P.
    Domingues, Francisco S.
    Hicks, Andrew A.
    Pichler, Irene
    JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [6] Intracellular delivery of Parkin-RING0-based fragments corrects Parkin-induced mitochondrial dysfunction through interaction with SLP-2
    Alessandra Zanon
    Marianna Guida
    Alexandros A. Lavdas
    Corrado Corti
    Maria Paulina Castelo Rueda
    Alessandro Negro
    Peter P. Pramstaller
    Francisco S. Domingues
    Andrew A. Hicks
    Irene Pichler
    Journal of Translational Medicine, 22
  • [7] Differential Effects of PINK1-or Parkin-Deficiency on the Dynamics of Mitochondria-ER Contact Sites and Calcium Homeostasis in iPSC-Derived Neurons
    Grossmann, D.
    Malburg, N.
    Glass, H.
    Sondermann, V.
    Pfeiffer, J.
    Petters, J.
    Lukas, J.
    Seibler, P.
    Klein, C.
    Gruenewald, A.
    Hermann, A.
    MOVEMENT DISORDERS, 2023, 38 : S642 - S643
  • [8] Unraveling the Role of TBCK in Human iPSC-Derived Neurons: Mitochondrial Dysfunction Due to mRNA Transport Defects as Mechanism of Neurodegeneration?
    Flores-Mendez, Marco
    Tintos-Hernandez, Jesus A.
    Ortiz-Gonzalez, Xilma
    ANNALS OF NEUROLOGY, 2022, 92 : S171 - S171
  • [9] CHCHD2 rescues the mitochondrial dysfunction in iPSC-derived neurons from patient with Mohr-Tranebjaerg syndrome
    Yihua Huang
    Zirui Chen
    Weiling Deng
    Yawei Jiang
    Yue Pan
    Zhirong Yuan
    Hailiang Hu
    Yongming Wu
    Yafang Hu
    Cell Death & Disease, 16 (1)
  • [10] Mitochondrial dysfunction associated with increased oxidative stress and α-synuclein accumulation in PARK2 iPSC-derived neurons and postmortem brain tissue
    Yoichi Imaizumi
    Yohei Okada
    Wado Akamatsu
    Masato Koike
    Naoko Kuzumaki
    Hideki Hayakawa
    Tomoko Nihira
    Tetsuro Kobayashi
    Manabu Ohyama
    Shigeto Sato
    Masashi Takanashi
    Manabu Funayama
    Akiyoshi Hirayama
    Tomoyoshi Soga
    Takako Hishiki
    Makoto Suematsu
    Takuya Yagi
    Daisuke Ito
    Arifumi Kosakai
    Kozo Hayashi
    Masanobu Shouji
    Atsushi Nakanishi
    Norihiro Suzuki
    Yoshikuni Mizuno
    Noboru Mizushima
    Masayuki Amagai
    Yasuo Uchiyama
    Hideki Mochizuki
    Nobutaka Hattori
    Hideyuki Okano
    Molecular Brain, 5