Minkowski vacuum transitions in (nongeometric) flux compactifications

被引:1
|
作者
Herrera-Suarez, Wilberth [1 ]
Loaiza-Brito, Oscar [2 ]
机构
[1] IPN, Ctr Invest & Estud Avanzados, Unidad Monterrey Autopista Monterrey, Apodaca 66600, Nuevo Leon, Mexico
[2] Univ Guanajuato, Dept Fis, Div Ciencias & Ingn, Guanajuato, Mexico
来源
PHYSICAL REVIEW D | 2010年 / 81卷 / 04期
关键词
STRING THEORY; DUALITY;
D O I
10.1103/PhysRevD.81.046002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work we study the generalization of twisted homology to geometric and nongeometric backgrounds. In the process, we describe the necessary conditions to wrap a network of D-branes on twisted cycles. If the cycle is localized in time, we show how by an instantonic brane mediation, some D-branes transform into fluxes on different backgrounds, including nongeometric fluxes. As a consequence, we show that in the case of a IIB six-dimensional torus compactification on a simple orientifold, the flux superpotential is not invariant by this brane-flux transition, allowing the connection among different Minkowski vacuum solutions. For the case in which nongeometric fluxes are turned on, we also discuss some topological restrictions for the transition to occur. In this context, we show that there are some vacuum solutions protected to change by a brane-flux transition.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Nongeometric flux compactifications
    Shelton, J
    Taylor, W
    Wecht, B
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2005, (10): : 2057 - 2080
  • [2] Lectures on nongeometric flux compactifications
    Wecht, Brian
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (21) : S773 - S794
  • [3] Dictionary for the type II nongeometric flux compactifications
    Shukla, Pramod
    [J]. PHYSICAL REVIEW D, 2021, 103 (08)
  • [4] Nongeometric Calabi-Yau compactifications and fractional mirror symmetry
    Israel, Dan
    [J]. PHYSICAL REVIEW D, 2015, 91 (06):
  • [5] Scanning the landscape of flux compactifications: vacuum structure and soft supersymmetry breaking
    AbdusSalarn, Shehu S.
    Conlon, Joseph P.
    Quevedo, Fernando
    Suruliz, Kerim
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (12):
  • [6] On Conformal Infinity and Compactifications of the Minkowski Space
    Arkadiusz Jadczyk
    [J]. Advances in Applied Clifford Algebras, 2011, 21 : 721 - 756
  • [7] On Conformal Infinity and Compactifications of the Minkowski Space
    Jadczyk, Arkadiusz
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (04) : 721 - 756
  • [8] Supersymmetry breaking with zero vacuum energy in M-theory flux compactifications
    Krause, Axel
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (24)
  • [9] Lobotomy of flux compactifications
    Giuseppe Dibitetto
    Adolfo Guarino
    Diederik Roest
    [J]. Journal of High Energy Physics, 2014
  • [10] Flux compactifications and naturalness
    Wilfried Buchmuller
    Markus Dierigl
    Emilian Dudas
    [J]. Journal of High Energy Physics, 2018