Individual growth estimation in elasmobranchs: the multi-model inference approach

被引:0
|
作者
Bricia Guzman-Castellanos, Ana [1 ]
Morales-Bojorquez, Enrique [1 ]
Balart, Eduardo F. [1 ]
机构
[1] Ctr Invest Biol Noroeste, SC Inst Politecn Nacl 195, La Paz, Baja Calif Sur, Mexico
来源
HIDROBIOLOGICA | 2014年 / 24卷 / 02期
关键词
Akaike information criterion; growth models; shark; rays; MODELING FISH GROWTH; VON-BERTALANFFY; ALLOMETRIC GROWTH; 2-PHASE GROWTH; AGE; SHARK; PATTERNS; GULF; MORTALITY; SELECTION;
D O I
暂无
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Elasmobranchs play an important role in marine ecosystem and worldwide fisheries. Accurate and quantitative description of growth is crucial in modeling the demography and fisheries stock assessment. This study reviews the quantitative methods (asymptotic, non-asymptotic, and generalized), algorithms, and criteria for the model selection applied for growth modeling in elasmobranchs. We analyzed and contrasted the criteria for model selection, mainly between model selection using r(2) and information theoretic approach. In marine organisms, the Akaike information criterion (AIC) has been frequently used as a measure of the relative goodness of fit of different growth models, applied to data from different species such as: Dasyatis americana, Carcharhinus acronotus, Carcharhinus plumbeus, Heterodontus portusjacksoni, Malacoraja senta, Mustelus asterias and Mustelus mustelus. We suggest the use of AIC to select the best growth model in elasmobranchs studies.
引用
收藏
页码:137 / 149
页数:13
相关论文
共 50 条
  • [1] Multi-Model Approach on Growth Estimation and Association With Life History Trait for Elasmobranchs
    Liu, Kwang-Ming
    Wu, Chiao-Bin
    Joung, Shoou-Jeng
    Tsai, Wen-Pei
    Su, Kuan-Yu
    [J]. FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [2] A universal approach for multi-model schema inference
    Koupil, Pavel
    Hricko, Sebastian
    Holubova, Irena
    [J]. JOURNAL OF BIG DATA, 2022, 9 (01)
  • [3] A universal approach for multi-model schema inference
    Pavel Koupil
    Sebastián Hricko
    Irena Holubová
    [J]. Journal of Big Data, 9
  • [4] ESTIMATION OF THE INDIVIDUAL GROWTH PARAMETERS OF THE BROWN CRAB CALLINECTES BELLICOSUS (BRACHYURA, PORTUNIDAE) USING A MULTI-MODEL APPROACH
    Rodriguez-Dominguez, Guillermo
    Castillo-Vargasmachuca, Sergio G.
    Perez-Gonzalez, Raul
    Alberto Aragon-Noriega, E.
    [J]. CRUSTACEANA, 2012, 85 (01) : 55 - 69
  • [5] Modeling growth on the cannonball jellyfish Stomolophus meleagris based on a multi-model inference approach
    Juana López-Martínez
    Edgar Arnoldo Arzola-Sotelo
    Manuel Otilio Nevárez-Martínez
    F. Javier Álvarez-Tello
    Enrique Morales-Bojórquez
    [J]. Hydrobiologia, 2020, 847 : 1399 - 1422
  • [6] Modeling growth on the cannonball jellyfish Stomolophus meleagris based on a multi-model inference approach
    Lopez-Martinez, Juana
    Arzola-Sotelo, Edgar Arnoldo
    Nevarez-Martinez, Manuel Otilio
    Alvarez-Tello, F. Javier
    Morales-Bojorquez, Enrique
    [J]. HYDROBIOLOGIA, 2020, 847 (06) : 1399 - 1422
  • [7] Multi-Model Inference in Biogeography
    Millington, James D. A.
    Perry, George L. W.
    [J]. GEOGRAPHY COMPASS, 2011, 5 (07): : 448 - 463
  • [8] Multi-model inference for growth parameter estimation of the Bigeye Croaker Micropogonias megalops in the Upper Gulf of California
    Aragon-Noriega, E. Alberto
    Alcantara-Razo, Edgar
    Valenzuela-Quinonez, Wenceslao
    Rodriguez-Quiroz, Gerardo
    [J]. REVISTA DE BIOLOGIA MARINA Y OCEANOGRAFIA, 2015, 50 (01): : 25 - 38
  • [9] Multi-model Approach to Human Functional State Estimation
    Durkee, Kevin
    Hiriyanna, Avinash
    Pappada, Scott
    Feeney, John
    Galster, Scott
    [J]. FOUNDATIONS OF AUGMENTED COGNITION: NEUROERGONOMICS AND OPERATIONAL NEUROSCIENCE, AC 2016, PT I, 2016, 9743 : 188 - 197
  • [10] Schema Inference for Multi-Model Data
    Koupil, Pavel
    Hricko, Sebastian
    Holubova, Irena
    [J]. PROCEEDINGS OF THE 25TH INTERNATIONAL ACM/IEEE CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS, MODELS 2022, 2022, : 13 - 23