Semi-local machine-learned kinetic energy density functional demonstrating smooth potential energy curves

被引:32
|
作者
Seino, Junji [1 ,2 ]
Kageyama, Ryo [3 ]
Fujinami, Mikito [3 ]
Ikabata, Yasuhiro [1 ]
Nakai, Hiromi [1 ,3 ,4 ]
机构
[1] Waseda Univ, Waseda Res Inst Sci & Engn, Tokyo 1698555, Japan
[2] Japan Sci & Technol Agcy, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[3] Waseda Univ, Sch Adv Sci & Engn, Dept Chem & Biochem, Tokyo 1698555, Japan
[4] Kyoto Univ, ESICB, Nishigyo Ku, Kyoto 6158520, Japan
基金
日本科学技术振兴机构;
关键词
EXCHANGE-ENERGY; ELECTRON-DENSITY;
D O I
10.1016/j.cplett.2019.136732
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This letter investigates the accuracy of the semi-local machine-learned kinetic energy density functional (KEDF) for potential energy curves (PECs) in typical small molecules. The present functional is based on a previously developed functional adopting electron densities and their gradients up to the third order as descriptors (Seino et al., 2018). It further introduces new descriptors, namely, the distances between grid points and centers of nuclei, to describe the non-local nature of the KEDF. The numerical results show a reasonable performance of the present model in reproducing the PECs of small molecules with single, double, and triple bonds.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Orbital-free density functional theory calculation applying semi-local machine-learned kinetic energy density functional and kinetic potential
    Fujinami, Mikito
    Kageyama, Ryo
    Seino, Junji
    Ikabata, Yasuhiro
    Nakai, Hiromi
    [J]. CHEMICAL PHYSICS LETTERS, 2020, 748
  • [2] Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density
    Seino, Junji
    Kageyama, Ryo
    Fujinami, Mikito
    Ikabata, Yasuhiro
    Nakai, Hiromi
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24):
  • [3] Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density (vol 148, 241705, 2018)
    Seino, Junji
    Kageyama, Ryo
    Fujinami, Mikito
    Ikabata, Yasuhiro
    Nakai, Hiromi
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (07):
  • [4] Machine-Learned Potential Energy Surfaces for Free Sodium Clusters with Density Functional Accuracy: Applications to Melting
    Nagare, Balasaheb J.
    Chacko, Sajeev
    Kanhere, Dilip G.
    [J]. PHYSICA SCRIPTA, 2024, 99 (05)
  • [5] Variational principle to regularize machine-learned density functionals: The non-interacting kinetic-energy functional
    del Mazo-Sevillano, Pablo
    Hermann, Jan
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (19):
  • [6] Semi-Local Density Functional for the Exchange-Correlation Energy of Electrons in Two Dimensions
    Rasanen, E.
    Pittalis, S.
    Vilhena, J. G.
    Marques, M. A. L.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2010, 110 (12) : 2308 - 2314
  • [7] Decoding energy decomposition analysis: Machine-learned Insights on the impact of the density functional on the bonding analysis
    Oestereich, Toni
    Tonner-Zech, Ralf
    Westermayr, Julia
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (07) : 368 - 376
  • [8] Pure non-local machine-learned density functional theory for electron correlation
    Margraf, Johannes T.
    Reuter, Karsten
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] Pure non-local machine-learned density functional theory for electron correlation
    Johannes T. Margraf
    Karsten Reuter
    [J]. Nature Communications, 12
  • [10] LOCAL DENSITY FUNCTIONAL FOR KINETIC-ENERGY
    HUNTINGTON, HB
    [J]. PHYSICAL REVIEW B, 1979, 20 (08): : 3165 - 3171