Microcalcification detection using independent component analysis

被引:0
|
作者
Zheng, J [1 ]
Regentova, E [1 ]
机构
[1] Univ Nevada, Dept Elect & Comp Engn, Las Vegas, NV 89154 USA
关键词
independent component analysis; mammogram; microcalcifications; neural network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the Independent Component Analysis (ICA) is employed to estimate unknown, statistically independent sources that form the regions of mammograms according to the linear mixing model. The minimum description length criterion is used to estimate the number of sources. The transformation coefficients of ICA are used as classification features of regions of interest. The extracted features are then fed into a three-layer back propagation neural network classifier to decide whether the region containing microcalcifications (MC) or not. The free-response receiver operating characteristic (FROC) analysis is used to evaluate the performance of the scheme. The results demonstrate that the designed system is able to detect approximately 90% of the true clusters with an average of one false cluster detected per image. Thus, it can be effectively used in computer-aided diagnostic prompting.
引用
收藏
页码:64 / 68
页数:5
相关论文
共 50 条
  • [1] Independent Component Analysis to Detect Clustered Microcalcification Breast Cancers
    Gallardo-Caballero, R.
    Garcia-Orellana, C. J.
    Garcia-Manso, A.
    Gonzalez-Velasco, H. M.
    Macias-Macias, M.
    [J]. SCIENTIFIC WORLD JOURNAL, 2012,
  • [2] BOTNET DETECTION USING INDEPENDENT COMPONENT ANALYSIS
    Ibrahim, Wan Nur Hidayah
    Anuar, Mohd Syahid
    Selamat, Ali
    Krejcar, Ondrej
    [J]. IIUM ENGINEERING JOURNAL, 2022, 23 (01): : 95 - 115
  • [3] Automatic Detection of SSVEP using Independent Component Analysis
    Kolodziej, Marcin
    Majkowski, Andrzej
    Rak, Remigiusz J.
    [J]. 2016 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA), 2016, : 196 - 201
  • [4] Structural damage detection using independent component analysis
    Zang, C
    Friswell, MI
    Imregun, M
    [J]. STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2004, 3 (01): : 69 - 83
  • [5] Target detection in FLIR imagery using independent component analysis
    Sadeque, A. Z.
    Alam, M. S.
    [J]. AUTOMATIC TARGET RECOGNITION XVI, 2006, 6234
  • [6] Electrocardiogram beat detection enhancement using Independent Component Analysis
    Kuzilek, Jakub
    Lhotska, Lenka
    [J]. MEDICAL ENGINEERING & PHYSICS, 2013, 35 (06) : 704 - 711
  • [7] Change Detection in Sonar Images Using Independent Component Analysis
    G-Michael, Tesfaye
    Roberts, Rodney G.
    [J]. DETECTION AND SENSING OF MINES, EXPLOSIVE OBJECTS, AND OBSCURED TARGETS XXII, 2017, 10182
  • [8] Damage Detection of Composite Structure Using Independent Component Analysis
    Hajrya, R.
    Mechbal, N.
    Verge, M.
    [J]. STRUCTURAL HEALTH MONITORING 2011: CONDITION-BASED MAINTENANCE AND INTELLIGENT STRUCTURES, VOL 1, 2011, : 241 - 248
  • [9] Detection of Transformer Internal Faults by Using Independent Component Analysis
    Kilic, Erdal
    Ozgonenel, Okan
    [J]. 2007 IEEE 15TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS, VOLS 1-3, 2007, : 1191 - +
  • [10] Video shot boundary detection using independent component analysis
    Zhou, J
    Zhang, XP
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 541 - 544