Nonconvex Regularized Robust PCA Using the Proximal Block Coordinate Descent Algorithm

被引:21
|
作者
Wen, Fei [1 ]
Ying, Rendong [1 ]
Liu, Peilin [1 ]
Truong, Trieu-Kien [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
关键词
Robust principal component analysis; low-rank; nonconvex optimization; block coordinate descent; sparse; L-1/2; REGULARIZATION; VARIABLE SELECTION; IMAGE; CONVERGENCE; SHRINKAGE; RECOVERY;
D O I
10.1109/TSP.2019.2940121
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work addresses the robust principal component analysis (PCA) problem using generalized nonoconvex regularization for low-rank and sparsity promotion. While the popular nuclear and l(1)-norm penalties have a bias problem, nonconvex regularization can alleviate the bias problem and can be expected to achieve better performance. In this paper, a proximal block coordinate descent (BCD) algorithm is used to efficiently solve the nonconvex regularized robust PCA problem. It is globally convergent under weak conditions. Further, for a popular class of penalties having discontinuous threshoding functions, we establish the convergence to a restricted strictly local minimizer and, also, a local linear convergence rate for the proximal BCD algorithm. Moreover, convergence to a local minimizer has been derived for hard-thresholding. Our result is the first on nonconvex robust PCA with established convergence to strictly local minimizer with local linear convergence rate. Numerical experiments have been provided to demonstrate the performance of the new algorithm.
引用
收藏
页码:5402 / 5416
页数:15
相关论文
共 50 条
  • [1] Block coordinate descent for smooth nonconvex constrained minimization
    Birgin, E. G.
    Martinez, J. M.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (01) : 1 - 27
  • [2] Block coordinate descent for smooth nonconvex constrained minimization
    E. G. Birgin
    J. M. Martínez
    [J]. Computational Optimization and Applications, 2022, 83 : 1 - 27
  • [3] ALTERNATING STRUCTURE-ADAPTED PROXIMAL GRADIENT DESCENT FOR NONCONVEX NONSMOOTH BLOCK-REGULARIZED PROBLEMS
    Nikolova, Mila
    Tan, Pauline
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (03) : 2053 - 2078
  • [4] Sparse nonnegative tensor decomposition using proximal algorithm and inexact block coordinate descent scheme
    Deqing Wang
    Zheng Chang
    Fengyu Cong
    [J]. Neural Computing and Applications, 2021, 33 : 17369 - 17387
  • [5] Sparse nonnegative tensor decomposition using proximal algorithm and inexact block coordinate descent scheme
    Wang, Deqing
    Chang, Zheng
    Cong, Fengyu
    [J]. Neural Computing and Applications, 2021, 33 (24) : 17369 - 17387
  • [6] Sparse nonnegative tensor decomposition using proximal algorithm and inexact block coordinate descent scheme
    Wang, Deqing
    Chang, Zheng
    Cong, Fengyu
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (24): : 17369 - 17387
  • [7] Robust PCA via Regularized Reaper with a Matrix-Free Proximal Algorithm
    Beinert, Robert
    Steidl, Gabriele
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2021, 63 (05) : 626 - 649
  • [8] Robust PCA via Regularized Reaper with a Matrix-Free Proximal Algorithm
    Robert Beinert
    Gabriele Steidl
    [J]. Journal of Mathematical Imaging and Vision, 2021, 63 : 626 - 649
  • [9] Coordinate majorization descent algorithm for nonconvex penalized regression
    Wang, Yanxin
    Zhu, Li
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (13) : 2684 - 2698
  • [10] Inexact Block Coordinate Descent Algorithms for Nonsmooth Nonconvex Optimization
    Yang, Yang
    Pesavento, Marius
    Luo, Zhi-Quan
    Ottersten, Bjorn
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 947 - 961