Coralloidal carbon-encapsulated CoP nanoparticles generated on biomass carbon as a high-rate and stable electrode material for lithium-ion batteries

被引:60
|
作者
Jiang, Jietao [1 ,2 ]
Zhu, Kai [1 ]
Fang, Yongzheng [1 ]
Wang, Huizhong [3 ]
Ye, Ke [1 ]
Yan, Jun [1 ]
Wang, Guiling [1 ]
Cheng, Kui [1 ,3 ]
Zhou, Liming [3 ]
Cao, Dianxue [1 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin, Heilongjiang, Peoples R China
[2] CAS Key Lab Renewable Energy, Guangzhou 510640, Guangdong, Peoples R China
[3] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium ion battery; Anode; Carbon; Metal phosiphides; Nanomaterials; ONE-POT SYNTHESIS; ELECTROCHEMICAL PERFORMANCE; GRAPHENE OXIDE; ANODE MATERIAL; CAPACITY; COMPOSITES; STABILITY; ULTRAFAST; NANORODS; ENERGY;
D O I
10.1016/j.jcis.2018.07.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Architecture of electrode materials plays an important role in achieving favorable electrochemical performance via providing fast electronic transport pathway and shorten lithium ion diffusion distance. Herein, ultrafine CoP nanoparticles were successfully embedded in carbon nanorod, which were grown on the biomass-derived carbon (BC). When applied as anode materials for lithium-ion batteries, these CoP@C/BC displayed capable specific capacity, remarkable rate ability and outstanding long-term cycling performance. The capacity was governed by combination of diffusion-controlled and capacitive processes, according to quantitative kinetic analysis. The good electrochemical performance is attributed to hierarchical construction of nanosized CoP embedded in carbon nanorod and BC with high conductivity composite, which relieve the volume changing of CoP and provide large electrode/electrolyte interface. The present design of hierarchical architecture can be extended to other transition metal-based oxides, sulfide and phosphide electrode materials for high performance alkali metal ion batteries. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:579 / 585
页数:7
相关论文
共 50 条
  • [1] A high-rate carbon electrode for rechargeable lithium-ion batteries
    Tossici, R
    Berrettoni, M
    Nalimova, V
    Marassi, R
    Scrosati, B
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (03) : L64 - L67
  • [2] High-rate carbon electrode for rechargeable lithium-ion batteries
    Tossici, R.
    Berrettoni, M.
    Nalimova, V.
    Marassi, R.
    Journal of the Electrochemical Society, 1996, 143 (03):
  • [3] Confined Synthesis of SnO2 Nanoparticles Encapsulated in Carbon Nanotubes for High-Rate and Stable Lithium-Ion Batteries
    Ying Liu
    Ling Chen
    Hao Jiang
    Chunzhong Li
    Journal of Electronic Materials, 2022, 51 : 6637 - 6644
  • [4] Confined Synthesis of SnO2 Nanoparticles Encapsulated in Carbon Nanotubes for High-Rate and Stable Lithium-Ion Batteries
    Liu, Ying
    Chen, Ling
    Jiang, Hao
    Li, Chunzhong
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (12) : 6637 - 6644
  • [5] Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material
    He, Chunnian
    Wu, Shan
    Zhao, Naiqin
    Shi, Chunsheng
    Liu, Enzuo
    Li, Jiajun
    ACS NANO, 2013, 7 (05) : 4459 - 4469
  • [6] N-Doped Carbon Nanonecklaces with Encapsulated BiOCl Nanoparticles as High-Rate Anodes for Lithium-Ion Batteries
    Li, Jintong
    Pei, Cunyuan
    Yang, Song
    Zhang, Dongmei
    Sun, Bing
    Shen, Zexiang
    Ni, Shibing
    LANGMUIR, 2023, 40 (01) : 906 - 914
  • [7] Carbon clusters decorated hard carbon nanofibers as high-rate anode material for lithium-ion batteries
    Liu, Chang
    Xiao, Nan
    Wang, Yuwei
    Li, Hongqiang
    Wang, Gang
    Dong, Qiang
    Bai, Jinpeng
    Xiao, Jian
    Qiu, Jieshan
    FUEL PROCESSING TECHNOLOGY, 2018, 180 : 173 - 179
  • [8] Porous Graphitic Carbon Nanosheets as a High-Rate Anode Material for Lithium-Ion Batteries
    Chen, Long
    Wang, Zhiyuan
    He, Chunnian
    Zhao, Naiqin
    Shi, Chunsheng
    Liu, Enzuo
    Li, Jiajun
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (19) : 9537 - 9545
  • [9] Carbon-encapsulated silicon ordered nanofiber membranes as high-performance anode material for lithium-ion batteries
    Zhang, Meng
    Bai, Nan
    Lin, Wenfeng
    Wang, Hao
    Li, Jin
    Ma, Ling
    Wang, Xiaomeng
    Zhang, Dianping
    Cao, Zhijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010