RADIALLY SYMMETRIC SOLUTIONS OF THE ULTRA-RELATIVISTIC EULER EQUATIONS

被引:0
|
作者
Kunik, Matthias [1 ]
Liu, Hailiang [2 ]
Warnecke, Gerald [1 ]
机构
[1] Otto von Guericke Univ, Inst Anal & Numer, Gebaude 02,Univ Pl 2, D-39106 Magdeburg, Germany
[2] Iowa State Univ, Dept Math, Ames, IA 50010 USA
关键词
Relativistic Euler equations; conservation laws; hyperbolic systems; Lorentz trans-formations; shock waves; entropy conditions; rarefaction waves; KINETIC SCHEMES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ultra-relativistic Euler equations for an ideal gas are described in terms of the pressure p, the spatial part u is an element of R-3 of the dimensionless four-velocity and the particle density n. Radially symmetric solutions of these equations are studied. Analytical solutions are presented for the linearized system. For the original nonlinear equations we design and analyze a numerical scheme for simulating radially symmetric solutions in three space dimensions. The good performance of the scheme is demonstrated by numerical examples. In particular, it was observed that the method has the capability to capture accurately the pressure singularity formation caused by shock wave reflections at the origin.
引用
收藏
页码:401 / 422
页数:22
相关论文
共 50 条