A probabilistic framework for assessing spatio-temporal point patterns in the archaeological record

被引:63
|
作者
Crema, Enrico R. [1 ]
Bevan, Andrew [1 ]
Lake, Mark W. [1 ]
机构
[1] UCL, Inst Archaeol, London WC1H 0PY, England
关键词
Temporal uncertainty; Spatial analysis; Aoristic analysis; Monte-Carlo method; Settlement pattern; Jomon;
D O I
10.1016/j.jas.2009.12.012
中图分类号
Q98 [人类学];
学科分类号
030303 ;
摘要
The assessment of spatial patterns in archaeology is hampered by a number of constraints, one of the most serious of which is the intrinsic temporal uncertainty associated with most of the archaeological record. Different types of chronological definition or different degrees of temporal knowledge will suggest different kinds of spatial pattern, ultimately obscuring and restricting our interpretation of the background process, especially in cases where we are seeking a diachronic perspective. This paper addresses these problems by adopting both a probabilistic approach and a more standardised framework for diachronic analysis. First, we define the notion of temporal uncertainty and explore its analytical consequences. Second, we consider two methods by which it might be formally quantified, emphasising (a) the advantages of probability-weighted spatial analysis and (b) the comparison of alternative spatio-temporal patterns via Monte-Carlo simulation. Finally, we apply these methods to a case study that considers the distribution of Middle to Late Jomon (ca.5000-3000 BP) pithouses recorded in the Chiba New Town area of Japan (C) 2009 Elsevier Ltd All rights reserved
引用
收藏
页码:1118 / 1130
页数:13
相关论文
共 50 条
  • [1] Velocities for spatio-temporal point patterns
    Schliep, Erin M.
    Gelfand, Alan E.
    [J]. SPATIAL STATISTICS, 2019, 29 : 204 - 225
  • [2] A probabilistic framework for spatio-temporal video representation & indexing
    Greenspan, H
    Goldberger, J
    Mayer, A
    [J]. COMPUTER VISION - ECCV 2002, PT IV, 2002, 2353 : 461 - 475
  • [3] Local Clustering in Spatio-Temporal Point Patterns
    Mateu, Jorge
    Rodriguez-Cortes, Francisco J.
    [J]. MATHEMATICS OF PLANET EARTH, 2014, : 171 - 174
  • [4] A Qualitative Spatio-Temporal Framework Based on Point Algebra
    Sioutis, Michael
    Condotta, Jean-Francois
    Salhi, Yakoub
    Mazure, Bertrand
    [J]. ARTIFICIAL INTELLIGENCE: METHODOLOGY, SYSTEMS, AND APPLICATIONS, 2014, 8722 : 117 - 128
  • [5] Modeling spatio-temporal wildfire ignition point patterns
    Hering, Amanda S.
    Bell, Cynthia L.
    Genton, Marc G.
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2009, 16 (02) : 225 - 250
  • [6] Modeling spatio-temporal wildfire ignition point patterns
    Amanda S. Hering
    Cynthia L. Bell
    Marc G. Genton
    [J]. Environmental and Ecological Statistics, 2009, 16 : 225 - 250
  • [7] A Spatio-Temporal Probabilistic Framework for Dividing and Predicting Facial Action Units
    Rahman, A. K. M. Mahbubur
    Tanveer, Md. Iftekhar
    Yeasin, Mohammed
    [J]. AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION, PT II, 2011, 6975 : 598 - 607
  • [8] Spatio-temporal classification in point patterns under the presence of clutter
    Siino, Marianna
    Rodriguez-Cortes, Francisco J.
    Mateu, Jorge
    Adelfio, Giada
    [J]. ENVIRONMETRICS, 2020, 31 (02)
  • [9] An Efficient Probabilistic Algorithm to Detect Periodic Patterns in Spatio-Temporal Datasets
    Gutierrez-Soto, Claudio
    Galdames, Patricio
    Palomino, Marco A.
    [J]. BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (06)
  • [10] Probabilistic spatio-temporal resource search
    Qing Guo
    Ouri Wolfson
    [J]. GeoInformatica, 2018, 22 : 75 - 103