Multiobjective Tuning of a Multitarget Tracking Algorithm using an Evolutionary Algorithm

被引:0
|
作者
Secrest, Barry R. [1 ]
Lamont, Gary B. [1 ]
机构
[1] USAF, Inst Technol, Grad Sch Engn & Management, Dept Elect & Comp Engn,WPAFB, Dayton, OH 45429 USA
关键词
Multitarget Tracking; Multiobjective Evolutionary Algorithm; Monte Carlo Analysis; Kalman Filter;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multitarget tracking MTT algorithms have been tuned by a variety of optimization methods using a single objective, but only recently have they been tuned with multiobjectives techique. The desire to compare single-objective MTT algorithms using numerous metrics is well documented in the literature for over a decade. We discuss an experiment to quantify the need or lack of need for Monte Carlo (MC) runs in tuning the parameters of a MTT algorithm using some of these metrics. The extreme computational requirement of running a MTT MC experiment for each individual evaluation function drives the need to determine the worth of doing so. The results of using a single run are compared to that of using a MC evaluation with multiple runs as compared to a multiobjective evolutionary algorithm approach. Additional analysis is performed on the search space demonstrating other useful information the decision maker may use to select an optimal operating point from a calculated Pareto Front.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 50 条
  • [1] Using a genetic algorithm for multitarget tracking
    Hillis, DB
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 3550 - 3553
  • [2] Nonlinear blind separation algorithm using multiobjective evolutionary algorithm
    Liu, HL
    Xie, SL
    Qiu, SS
    [J]. 2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 1473 - 1476
  • [3] ON A DECOUPLED MULTITARGET TRACKING ALGORITHM
    MING, H
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1990, 26 (04) : 681 - 685
  • [4] Systematic selection of tuning parameters for efficient predictive controllers using a multiobjective evolutionary algorithm
    Gutierrez-Urquidez, R. C.
    Valencia-Palomo, G.
    Rodriguez-Elias, O. M.
    Trujillo, L.
    [J]. APPLIED SOFT COMPUTING, 2015, 31 : 326 - 338
  • [5] Evolutionary multiobjective optimization using a cultural algorithm
    Coello, CAC
    Becerra, RL
    [J]. PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, : 6 - 13
  • [6] Supplier Selection Using Multiobjective Evolutionary Algorithm
    Rankovic, Vladimir
    Arsovski, Zora
    Arsovski, Slavko
    Kalinic, Zoran
    Milanovic, Igor
    Rejman-Petrovic, Dragana
    [J]. VIRTUAL AND NETWORKED ORGANIZATIONS, EMERGENT TECHNOLOGIES, AND TOOLS, 2012, 248 : 327 - +
  • [7] Multiobjective Adaptive Representation Evolutionary Algorithm (MAREA) - a new evolutionary algorithm for multiobjective optimization
    Grosan, Crina
    [J]. APPLIED SOFT COMPUTING TECHNOLOGIES: THE CHALLENGE OF COMPLEXITY, 2006, 34 : 113 - 121
  • [8] Plantwide controller tuning using a multiobjective genetic algorithm
    Phimister, JR
    Fraga, ES
    Seider, WD
    [J]. DYNAMICS & CONTROL OF PROCESS SYSTEMS 1998, VOLUMES 1 AND 2, 1999, : 369 - 374
  • [9] A new multiobjective evolutionary algorithm
    Sarker, R
    Liang, KH
    Newton, C
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 140 (01) : 12 - 23
  • [10] An algorithm for multisource beamforming and multitarget tracking
    Affes, S
    Gazor, S
    Grenier, V
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (06) : 1512 - 1522