Mode Characteristics of Waveguides Based on Three Graphene-Coated Dielectric Nanowires

被引:4
|
作者
Wei Zhuangzhi [1 ]
Xue Wenrui [1 ]
Peng Yanling [1 ]
Cheng Xin [1 ]
Li Changyong [2 ,3 ]
机构
[1] Shanxi Univ, Coll Phys & Elect Engn, Taiyuan 030006, Shanxi, Peoples R China
[2] Shanxi Univ, Inst Laser Spect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Shanxi, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
关键词
optics at surfaces; surface plasmons; graphene; waveguides; multipole method; modes;
D O I
10.3788/AOS201939.0124001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a waveguide based on three graphene-coated dielectric nanowires with a non-coplanar axis using the multipole method, and analyze the real part of effective refractive index and propagation length of five supported low-order modes by changing the operating frequency, radius and height of the central nanowires, the horizontal space between the nanowires, and the Fermi energy of graphene. When the operating frequency increases from 30 THz to 10 THz, the real part of the effective refractive index increases, whereas the propagation length decreases. When the radius of the central nanowire increases from 20 nm to 55 nm, the real part of effective refractive index increases; however, the corresponding propagation length varies. When the height of the central nanowire increases from 0 to 100 nm, the real part of effective refractive index decreases, whereas the propagation length increases, except for that of mode 5. When the horizontal space between the nanowires increases from 160 nm to 200 nm or the Fermi energy increases from 0.4 eV to 0.8 eV, the propagation length increases, whereas the real part of the effective refractive index decreases.
引用
收藏
页数:11
相关论文
共 33 条
  • [1] Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices
    Bao, Qiaoliang
    Loh, Kian Ping
    [J]. ACS NANO, 2012, 6 (05) : 3677 - 3694
  • [2] Surface plasmon subwavelength optics
    Barnes, WL
    Dereux, A
    Ebbesen, TW
    [J]. NATURE, 2003, 424 (6950) : 824 - 830
  • [3] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
  • [4] Nanofocusing in a tapered graphene plasmonic waveguide
    Dai, Yunyun
    Zhu, Xiaolong
    Mortensen, N. Asger
    Zi, Jian
    Xiao, Sanshui
    [J]. JOURNAL OF OPTICS, 2015, 17 (06)
  • [5] Single-mode graphene-coated nanowire plasmonic waveguide
    Gao, Yixiao
    Ren, Guobin
    Zhu, Bofeng
    Wang, Jing
    Jian, Shuisheng
    [J]. OPTICS LETTERS, 2014, 39 (20) : 5909 - 5912
  • [6] Geng L, 2017, LASERAND OPTOELECTRI, V54, P5147
  • [7] Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI
    He, Sailing
    Zhang, Xizhou
    He, Yingran
    [J]. OPTICS EXPRESS, 2013, 21 (25): : 30664 - 30673
  • [8] HUANG HS, 1990, J LIGHTWAVE TECHNOL, V8, P945
  • [9] Ju L, 2011, NAT NANOTECHNOL, V6, P630, DOI [10.1038/NNANO.2011.146, 10.1038/nnano.2011.146]
  • [10] Multipole method for microstructured optical fibers. II. Implementation and results
    Kuhlmey, BT
    White, TP
    Renversez, G
    Maystre, D
    Botten, LC
    de Sterke, CM
    McPhedran, RC
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (10) : 2331 - 2340