EMG based Hand Gesture Recognition using Deep Learning

被引:0
|
作者
Ozdemir, Mehmet Akif [1 ]
Kisa, Deniz Hande [1 ]
Guren, Onan [1 ]
Onan, Aytug [2 ]
Akan, Aydin [3 ]
机构
[1] Izmir Katip Celebi Univ, Dept Biomed Engn, Izmir, Turkey
[2] Izmir Katip Celebi Univ, Dept Comp Engn, Izmir, Turkey
[3] Izmir Univ Econ, Dept Elect & Elect Eng, Izmir, Turkey
关键词
CNN; Deep Learning; EMG; Hand Gesture; ResNet; Spectrogram; STFT;
D O I
10.1109/tiptekno50054.2020.9299264
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Electromyography (EMG) signal is a non stationary bio-signal based on the measurement of the electrical activity of the muscles. EMG based recognition systems play an important role in many fields such as diagnosis of neuromuscular diseases, human-computer interactions, console games, sign language detection, virtual reality applications, and amputee device controls. In this study, a novel approach based on deep learning has been proposed to improve the accuracy rate in the prediction of hand movements. Firstly, 4-channel surface EMG (sEMG) signals have been measured while simulating 7 different hand gestures (Extension, Flexion, Open Hand, Punch, Radial Deviation, Rest, and Ulnar Deviation) from 30 participants. The obtained sEMG signals have been segmented into sections where each movement was found. Then, spectrogram images of the segmented sEMG signals have been created by means of Short-Time Fourier Transform (STFT). The created colored spectrogram images have trained with 50-layer Convolutional Neural Network (CNN) based on Residual Networks (ResNet) architecture. Owing to the proposed method, test accuracy of 99.59% and F1 Score of 99.57% have achieved for 7 different hand gesture classifications.
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [1] Hand Gesture Recognition Using Deep Learning
    Hussain, Soeb
    Saxena, Rupal
    Han, Xie
    Khan, Jameel Ahmed
    Shin, Hyunchul
    PROCEEDINGS INTERNATIONAL SOC DESIGN CONFERENCE 2017 (ISOCC 2017), 2017, : 48 - 49
  • [2] Intersected EMG Heatmaps and Deep Learning Based Gesture Recognition
    Ke, Weijie
    Xing, Yannan
    Di Caterina, Gaetano
    Petropoulakis, Lykourgos
    Soraghan, John
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 73 - 78
  • [3] Deep Learning for Gesture Recognition based on Surface EMG Data
    Fukano, Kaichi
    Iiazawa, Kazuma
    Soeda, Takuto
    Shirai, Aya
    Capi, Genci
    2021 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2021, : 41 - 45
  • [4] Research on the Hand Gesture Recognition Based on Deep Learning
    Sun, Jing-Hao
    Ji, Ting-Ting
    Zhang, Shu-Bin
    Yang, Jia-Kui
    Ji, Guang-Rong
    2018 12TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND ELECTROMAGNETIC THEORY (ISAPE), 2018,
  • [5] EMG based Gesture Recognition using Machine Learning
    Anil, Nikitha
    Sreeletha, S. H.
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 1560 - 1564
  • [6] Real-Time Hand Gesture Recognition Model Using Deep Learning Techniques and EMG Signals
    Chung, Edison A.
    Benalcazar, Marco E.
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [7] Real-Time Hand Gesture Recognition With EMG Using Machine Learning
    Jaramillo, Andres G.
    Benalcazar, Marco E.
    2017 IEEE SECOND ECUADOR TECHNICAL CHAPTERS MEETING (ETCM), 2017,
  • [8] Machine Learning-Based Hand Gesture Recognition via EMG Data
    Karapinar Senturk, Zehra
    Bakay, Melahat Sevgul
    ADCAIJ-ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 2021, 10 (02): : 123 - 136
  • [9] An Efficient Hand Gesture Recognition System Using Deep Learning
    Deepa, R.
    Sandhya, M. K.
    INTELLIGENT COMPUTING, INFORMATION AND CONTROL SYSTEMS, ICICCS 2019, 2020, 1039 : 514 - 521
  • [10] Hand Gesture Recognition Using Instant High-density EMG Graph via Deep Learning Method
    Xiong, Dezhen
    Zhang, Daohui
    Zhao, Xingang
    Zhao, Yiwen
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5143 - 5148