Evolutionary subspace clustering using variable genome length

被引:0
|
作者
Peignier, Sergio [1 ]
Rigotti, Christophe [2 ]
Beslon, Guillaume [2 ]
机构
[1] Univ Lyon, INSA Lyon, INRA, BF2I,UMR0203, F-69621 Villeurbanne, France
[2] Univ Lyon, INSA Lyon, CNRS, INRIA,LIRIS,UMR5205, F-69621 Villeurbanne, France
关键词
evolutionary algorithm; subspace clustering; variable genome length;
D O I
10.1111/coin.12254
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subspace clustering is a data-mining task that groups similar data objects and at the same time searches the subspaces where similarities appear. For this reason, subspace clustering is recognized as more general and complicated than standard clustering. In this article, we present ChameleoClust+, a bioinspired evolutionary subspace clustering algorithm that takes advantage of an evolvable genome structure to detect various numbers of clusters located in different subspaces. ChameleoClust+ incorporates several biolike features such as a variable genome length, both functional and nonfunctional elements, and mutation operators including large rearrangements. It was assessed and compared with the state-of-the-art methods on a reference benchmark using both real-world and synthetic data sets. Although other algorithms may need complex parameter settings, ChameleoClust+ needs to set only one subspace clustering ad hoc and intuitive parameter: the maximal number of clusters. The remaining parameters of ChameleoClust+ are related to the evolution strategy (eg, population size, mutation rate), and a single setting for all of them turned out to be effective for all the benchmark data sets. A sensitivity analysis has also been carried out to study the impact of each parameter on the subspace clustering quality.
引用
收藏
页码:574 / 612
页数:39
相关论文
共 50 条
  • [1] Subspace Clustering Using Evolvable Genome Structure
    Peignier, Sergio
    Rigotti, Christophe
    Beslon, Guillaume
    GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 575 - 582
  • [2] Soft Subspace Clustering Using Differential Evolutionary Algorithm
    Li, Yangyang
    Lu, Yujing
    Jiao, Licheng
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 545 - 552
  • [3] On evolutionary subspace clustering with symbiosis
    Vahdat A.
    Heywood M.I.
    Evolutionary Intelligence, 2014, 6 (4) : 229 - 256
  • [4] Iterative Evolutionary Subspace Clustering
    Boudjeloud-Assala, Lydia
    Blansche, Alexandre
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 424 - 431
  • [5] Symbiotic Evolutionary Subspace Clustering
    Vahdat, Ali
    Heywood, Malcolm I.
    Zincir-Heywood, A. Nur
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [6] Towards effective subspace clustering with an evolutionary algorithm
    Sarafis, IA
    Trinder, PW
    Zalzala, AMS
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 797 - 806
  • [7] Bottom-up Evolutionary Subspace Clustering
    Vahdat, Ali
    Heywood, Malcolm
    Zincir-Heywood, Nur
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [8] Multi-objective evolutionary clustering using variable-length real jumping genes genetic algorithm
    Ripon, Kazi Shah Nawaz
    Tsang, Chi-Ho
    Kwong, Sam
    Ip, Man-Ki
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2006, : 1200 - +
  • [9] Clustering variable length sequences by eigenvector decomposition using HMM
    Porikli, F
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, PROCEEDINGS, 2004, 3138 : 352 - 360
  • [10] Improved Multi-objective Evolutionary Subspace Clustering
    Paul, Dipanjyoti
    Kumar, Abhishek
    Saha, Sriparna
    Mathew, Jimson
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 691 - 703