Mathematical results on the stability of quasi-static paths of elastic-plastic systems with hardening

被引:0
|
作者
Petrov, A. [1 ]
Martins, J. A. C. [2 ,3 ]
Marques, M. D. P. Monteiro [4 ,5 ]
机构
[1] Weierstrass Inst Angew Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[2] Inst Super Tecn, Dept Engn Civil, P-1049001 Lisbon, Portugal
[3] Inst Super Tecn, ICIST, P-1049001 Lisbon, Portugal
[4] Ctr Matemat & Aplicacoes Fundamentais, P-1649003 Lisbon, Portugal
[5] FCUL, P-1649003 Lisbon, Portugal
关键词
differential inclusions; plasticity; hardening; existence; stability;
D O I
10.1142/9789812706874_0012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, existence and uniqueness results for a class of dynamic and quasi-static problems with elastic-plastic systems are recalled, and a stability result is obtained for the quasi-static paths of those systems. The studied elastic-plastic systems are continuum 1D (bar) systems that have linear hardening, and the concept of stability of quasi-static paths used here takes into account the existence of fast (dynamic) and slow (quasi-static) times scales in the system. That concept is essentially a continuity property relatively to the size of the initial perturbations (as in Lyapunov stability) and relatively to the smallness of the rate of application of the forces (which plays here the role of the small parameter in singular perturbation problems).
引用
收藏
页码:167 / +
页数:2
相关论文
共 50 条
  • [1] Some results on the stability of quasi-static paths of elastic-plastic systems with hardening
    Martins, J. A. C.
    Monteiro Marques, M. D. P.
    Petrov, A.
    [J]. INTERNATIONAL WORKSHOP ON MULTI-RATE PROCESSES AND HYSTERESIS, 2006, 55 : 155 - +
  • [2] On the stability of quasi-static paths for finite dimensional elastic-plastic systems with hardening
    Martins, J. A. C.
    Monteiro Marques, M. D. P.
    Petrov, A.
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (04): : 303 - 313
  • [3] (In)stability of quasi-static paths of some finite dimensional smooth or elastic-plastic systems
    Martins, JAC
    Marques, MDPM
    Petrov, A
    Rebrova, NV
    Sobolev, VA
    Coelho, I
    [J]. INTERNATIONAL WORKSHOP ON HYSTERESIS & MULTI-SCALE ASYMPTOTICS, 2005, 22 : 124 - 138
  • [4] Mathematical results on the stability of quasi-static paths of smooth systems
    Rebrova, N. V.
    Martins, J. A. C.
    Sobolev, V. A.
    [J]. TOPICS ON MATHEMATICS FOR SMART SYSTEMS, 2007, : 183 - +
  • [5] On the stability of elastic-plastic systems with hardening
    Martins, J. A. C.
    Monteiro Marques, M. D. P.
    Petrov, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (02) : 1007 - 1021
  • [6] Elastic-plastic beam-on-foundation under quasi-static loading
    Chen, XW
    Yu, TX
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2000, 42 (12) : 2261 - 2281
  • [7] Assessing the "(in)stability of quasi-static paths"
    Martins, J. A. C.
    Simoes, F. M. F.
    Pinto da Costa, A.
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2012, 55 : 18 - 34
  • [8] A finite strain elastic-plastic model for the quasi-static behaviour of particulate composites
    Trumel, H
    Fanget, A
    Dragon, A
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1996, 34 (06) : 677 - 698
  • [9] Modified Quasi-Static, Elastic-Plastic Analysis for Blast Walls with Partially Fixed Support
    Panedpojaman, Pattamad
    [J]. ENGINEERING JOURNAL-THAILAND, 2012, 16 (05): : 45 - 56
  • [10] Quasi-static diametrical compression of characteristic elastic-plastic granules: Energetic aspects at contact
    Russell, Alexander
    Mueller, Peter
    Tomas, Juergen
    [J]. CHEMICAL ENGINEERING SCIENCE, 2014, 114 : 70 - 84