On-line speaking rate estimation using Gaussian Mixture Models

被引:0
|
作者
Faltlhauser, R [1 ]
Pfau, T [1 ]
Ruske, G [1 ]
机构
[1] Tech Univ Munich, Inst Human Machine Commun, D-8000 Munich, Germany
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Gaussian Mixture Models (GMM) are a widespread tool in applications like speaker identification or verification. In contrast to Hidden Markov Models (HMM) Gaussian Mixture Models are designed to model the general properties of an underlying acoustic source. In our paper we extend the application of GMMs to the assessment of speaking rate. Directly trained on the acoustic data, they can be either applied directly to estimate the speech rate category or - with the help of a mapping function - they can provide a continuous measure for the speaking rate. The mapping function can be realized by means of a Neural Net. First experiments showed a correlation coefficient of 0.66 between the lexical phoneme rate and our estimation based on speech rate dependent spectral variation. Moreover, our approach can be used simultaneously for high accuracy on-line gender detection.
引用
收藏
页码:1355 / 1358
页数:4
相关论文
共 50 条
  • [1] On-line Signature Verification Based on Gaussian Mixture Models
    Yang, Lou
    Liu, Mandan
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 224 - 230
  • [2] On-line signature verification by dynamic time warping and Gaussian mixture models
    Miguel-Hurtado, Oscar
    Mengibar-Pozo, Luis
    Lorenz, Michael G.
    Liu-Jimenez, Judith
    [J]. 41ST ANNUAL IEEE INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY, PROCEEDINGS, 2007, : 23 - +
  • [3] On-line signature verification using Gaussian Mixture Models and small-sample learning strategies
    Jaime Zapata-Zapata, Gabriel
    David Arias-Londono, Julian
    Francisco Vargas-Bonilla, Jesus
    Rafael Orozco-Arroyave, Juan
    [J]. REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2016, (79): : 84 - 97
  • [4] On-line estimation with the multivariate Gaussian distribution
    Dasgupta, Sanjoy
    Hsu, Daniel
    [J]. LEARNING THEORY, PROCEEDINGS, 2007, 4539 : 278 - +
  • [5] Rapid estimation of rate constants using on-line SW-NIR and trilinear models
    Bijlsma, S
    Louwerse, DJ
    Windig, W
    Smilde, AK
    [J]. ANALYTICA CHIMICA ACTA, 1998, 376 (03) : 339 - 355
  • [6] Nonintrusive speech quality estimation using Gaussian mixture models
    Falk, TH
    Chan, WY
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (02) : 108 - 111
  • [7] Estimation of missing LSF parameters using Gaussian Mixture Models
    Martin, R
    Hoelper, C
    Wittke, I
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 729 - 732
  • [8] ESTIMATION OF THE NEUTRAL FACE SHAPE USING GAUSSIAN MIXTURE MODELS
    Ulukaya, Sezer
    Erdem, Cigdem Eroglu
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 1385 - 1388
  • [9] On-line non-stationary ICA using mixture models
    Ahmed, A
    Andrieu, C
    Doucet, A
    Rayner, PJW
    [J]. 2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 3148 - 3151
  • [10] On-line multivariate statistical monitoring of batch processes using Gaussian mixture model
    Chen, Tao
    Zhang, Jie
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2010, 34 (04) : 500 - 507