Entropies and predictability of nonlinear processes and time series

被引:0
|
作者
Ebeling, W [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Fac Phys, Saratov, Russia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We analyze complex model processes and time series with respect to their predictability. The basic idea is that the detection of local order and of intermediate or long-range correlations is the main chance to make predictions about complex processes. The main methods used here are discretization, Zipf analysis and Shannon's conditional entropies. The higher order conditional Shannon entropies and local conditional entropies are calculated for model processes (Fibonacci, Feigenbaum) and for time series (Dow Jones). The results are used for the identification of local maxima of predictability.
引用
收藏
页码:1209 / 1217
页数:9
相关论文
共 50 条
  • [1] Boosting nonlinear predictability of macroeconomic time series
    Kauppi, Heikki
    Virtanen, Timo
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (01) : 151 - 170
  • [2] Estimation of entropies and dimensions by nonlinear symbolic time series analysis
    Finn, JM
    Goettee, JD
    Toroczkai, Z
    Anghel, M
    Wood, BP
    [J]. CHAOS, 2003, 13 (02) : 444 - 456
  • [3] Predictability in time series
    Salvino, LW
    Cawley, R
    Grebogi, C
    Yorke, JA
    [J]. PHYSICS LETTERS A, 1995, 209 (5-6) : 327 - 332
  • [4] On predictability of time series
    Xu, Paiheng
    Yin, Likang
    Yue, Zhongtao
    Zhou, Tao
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 345 - 351
  • [5] Estimating the predictability of an oceanic time series using linear and nonlinear methods
    Yuan, GC
    Lozier, MS
    Pratt, LJ
    Jones, CKRT
    Helfrich, KR
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2004, 109 (C8) : C080021 - 13
  • [6] Assessing the predictability for blast furnace system through nonlinear time series analysis
    Gao, Chuanhou
    Zhou, Zhimin
    Chen, Jiming
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (09) : 3037 - 3045
  • [7] A hybrid nonlinear predictor: Analysis of learning process and predictability for noisy time series
    Khalaf, AAM
    Nakayama, K
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1999, E82A (08) : 1420 - 1427
  • [8] Nonlinear time series models for multivariable dynamic processes
    Cinar, A
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1995, 30 (01) : 147 - 158
  • [9] Boosting nonlinear predictability of macroeconomic time series (vol 37, pg 151, 2021)
    Kauppi, Heikki
    Virtanen, Timo
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2021, 37 (03) : 1303 - 1303
  • [10] On predictability of atmospheric pollution time series
    Krcmar, IR
    Mandic, DP
    Foxall, RJ
    [J]. ARTIFICIAL NEURAL NETS AND GENETIC ALGORITHMS, 2001, : 481 - 484