CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria

被引:250
|
作者
Shipman, Seth L. . [1 ,2 ,3 ,4 ]
Nivala, Jeff [1 ,4 ]
Macklis, Jeffrey D. [2 ,3 ]
Church, George M. [1 ,4 ]
机构
[1] Harvard Med Sch, Dept Genet, 77 Ave Louis Pasteur, Boston, MA 02115 USA
[2] Harvard Univ, Dept Stem Cell & Regenerat Biol, Ctr Brain Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Harvard Stem Cell Inst, Bauer Lab 103, Cambridge, MA 02138 USA
[4] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
关键词
INFORMATION-STORAGE; DNA; ADAPTATION; GENERATION; RESISTANCE; IMMUNITY; ELEMENTS;
D O I
10.1038/nature23017
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
DNA is an excellent medium for archiving data. Recent efforts have illustrated the potential for information storage in DNA using synthesized oligonucleotides assembled in vitro(1-6). A relatively unexplored avenue of information storage in DNA is the ability to write information into the genome of a living cell by the addition of nucleotides over time. Using the Cas1-Cas2 integrase, the CRISPR-Cas microbial immune system stores the nucleotide content of invading viruses to confer adaptive immunity(7). When harnessed, this system has the potential to write arbitrary information into the genome(8). Here we use the CRISPR-Cas system to encode the pixel values of black and white images and a short movie into the genomes of a population of living bacteria. In doing so, we push the technical limits of this information storage system and optimize strategies to minimize those limitations. We also uncover underlying principles of the CRISPR-Cas adaptation system, including sequence determinants of spacer acquisition that are relevant for understanding both the basic biology of bacterial adaptation and its technological applications. This work demonstrates that this system can capture and stably store practical amounts of real data within the genomes of populations of living cells.
引用
收藏
页码:345 / +
页数:14
相关论文
共 50 条
  • [1] Commentary: CrISPr-Cas encoding of a Digital movie into the Genomes of a Population of living Bacteria
    Matsoukas, Ianis G.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2017, 5
  • [2] CRISPR–Cas encoding of a digital movie into the genomes of a population of living bacteria
    Seth L. Shipman
    Jeff Nivala
    Jeffrey D. Macklis
    George M. Church
    Nature, 2017, 547 : 345 - 349
  • [3] Comparative Analysis of CRISPR-Cas Systems in Pseudomonas Genomes
    Parra-Sanchez, Angel
    Antequera-Zambrano, Laura
    Martinez-Navarrete, Gema
    Zorrilla-Munoz, Vanessa
    Paz, Jose Luis
    Alvarado, Ysaias J.
    Gonzalez-Paz, Lenin
    Fernandez, Eduardo
    GENES, 2023, 14 (07)
  • [4] Comparative analysis of CRISPR-Cas systems in Klebsiella genomes
    Shen, Juntao
    Lv, Li
    Wang, Xudong
    Xiu, Zhilong
    Chen, Guoqiang
    JOURNAL OF BASIC MICROBIOLOGY, 2017, 57 (04) : 325 - 336
  • [5] CRISPR-Cas systems for editing, regulating and targeting genomes
    Jeffry D Sander
    J Keith Joung
    Nature Biotechnology, 2014, 32 : 347 - 355
  • [6] CRISPR-Cas systems for editing, regulating and targeting genomes
    Sander, Jeffry D.
    Joung, J. Keith
    NATURE BIOTECHNOLOGY, 2014, 32 (04) : 347 - 355
  • [7] CRISPR-Cas Technologies and Applications in Food Bacteria
    Stout, Emily
    Klaenhammer, Todd
    Barrangou, Rodolphe
    ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY, VOL 8, 2017, 8 : 413 - 437
  • [8] Programmable CRISPR-Cas transcriptional activation in bacteria
    Ho, Hsing-, I
    Fang, Jennifer R.
    Cheung, Jacky
    Wang, Harris H.
    MOLECULAR SYSTEMS BIOLOGY, 2020, 16 (07)
  • [9] Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria
    Nussenzweig, Philip M.
    Marraffini, Luciano A.
    ANNUAL REVIEW OF GENETICS, VOL 54, 2020, 2020, 54 : 93 - 120
  • [10] How bacteria control the CRISPR-Cas arsenal
    Leon, Lina M.
    Mendoza, Senen D.
    Bondy-Denomy, Joseph
    CURRENT OPINION IN MICROBIOLOGY, 2018, 42 : 87 - 95