Exploiting the parallel divide-and-conquer method to solve the symmetric tridiagonal eigenproblem

被引:0
|
作者
Badia, JM [1 ]
Vidal, AM [1 ]
机构
[1] Univ Jaume 1, Dept Comp Sci, Castellon 12071, Spain
关键词
D O I
10.1109/EMPDP.1998.647173
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a new divide-and-conquer parallel algorithm to compute the eigenvalues of symmetric tridiagonal matrices. This algorithm combines the use of rank-one modifications in the division phase and the application of the Laguerre iteration in the updating phase. Our method is compared with one based on the same scheme but using rank-two modifications. A thorough experimental analysis in the Gray T3D parallel computer has been carried out. Special emphasis has been put on analysing the influence of the deflation phenomena on the computational cost of this kind of algorithm. Experimental results show that an adequate exploitation of the inherent parallelism in the divide-and-conquer scheme produces very efficient parallel algorithms. The obtained speedups clearly improve the best sequential algorithm, including the standard implementation of QR iteration in LAPACK.
引用
收藏
页码:13 / 19
页数:7
相关论文
共 50 条
  • [1] A DIVIDE AND CONQUER METHOD FOR THE SYMMETRIC TRIDIAGONAL EIGENPROBLEM
    CUPPEN, JJM
    [J]. NUMERISCHE MATHEMATIK, 1981, 36 (02) : 177 - 195
  • [2] A DIVIDE-AND-CONQUER ALGORITHM FOR THE SYMMETRICAL TRIDIAGONAL EIGENPROBLEM
    GU, M
    EISENSTAT, SC
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (01) : 172 - 191
  • [3] A parallel symmetric block-tridiagonal divide-and-conquer algorithm
    Bai, Yihua
    Ward, Robert C.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04):
  • [4] A distributed divide-and-conquer approach to the parallel tridiagonal symmetric eigenvalue problem
    Pavani, R
    DeRos, U
    [J]. HIGH-PERFORMANCE COMPUTING AND NETWORKING, 1995, 919 : 717 - 722
  • [5] A Parallel Structured Divide-and-Conquer Algorithm for Symmetric Tridiagonal Eigenvalue Problems
    Liao, Xia
    Li, Shengguo
    Lu, Yutong
    Roman, Jose E.
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (02) : 367 - 378
  • [6] An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems
    Gansterer, WN
    Ward, RC
    Muller, RP
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (01): : 45 - 58
  • [7] A divide-and-conquer method for the tridiagonal generalized eigenvalue problem
    Elsner, L
    Fasse, A
    Langmann, E
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) : 141 - 148
  • [8] New fast divide-and-conquer algorithms for the symmetric tridiagonal eigenvalue problem
    Li, Shengguo
    Liao, Xiangke
    Liu, Jie
    Jiang, Hao
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2016, 23 (04) : 656 - 673
  • [9] AN IMPLEMENTATION OF A DIVIDE-AND-CONQUER ALGORITHM FOR THE UNITARY EIGENPROBLEM
    AMMAR, GS
    REICHEL, L
    SORENSEN, DC
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1992, 18 (03): : 292 - 307
  • [10] A Parallel Scheme Using the Divide-and-Conquer Method
    Qi Yang
    Son Dao
    Clement Yu
    Naphtali Rishe
    [J]. Distributed and Parallel Databases, 1997, 5 : 405 - 438