Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature

被引:435
|
作者
Arasaratnam, Ienkaran [1 ]
Haykin, Simon
Elliott, Robert J.
机构
[1] McMaster Univ, Commun Res Lab, Hamilton, ON L8S 4K1, Canada
[2] Univ Calgary, Haskayne Sch Business Sci, Calgary, AB T2N 1N4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Gauss-Hermite quadrature rule; Gaussian sum filter; nonlinear filtering; quadrature Kalman filter; statistical linear regression (SLR);
D O I
10.1109/JPROC.2007.894705
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new version of the quadrature Kalman filter (QKF) is developed theoretically and tested experimentally. We first derive the new QKF for nonlinear systems with additive Gaussian noise by linearizing the process and measurement functions using statistical linear regression (SLR) through a set of Gauss-Hermite quadrature points that parameterize the Gaussian density. Moreover, we discuss how the new QKF can be extended and modified to take into account specific details of a given application. We then go on to extend the use of the new QKF to discrete-time, nonlinear systems with additive, possibly non-Gaussian noise. A bank of parallel QKFs, called the Gaussian sum-quadrature Kalman filter (GS-QKF) approximates the predicted and posterior densities as a finite number of weighted sums of Gaussian densities. The weights are obtained from the residuals of the QKFs. Three different Gaussian mixture reduction techniques are presented to alleviate the growing number of the Gaussian sum terms inherent to the GS-QKFs. Simulation results exhibit a significant improvement of the GS-QKFs over other nonlinear filtering, approaches, namely, the basic bootstrap (particle) filters and Gaussian-sum extended Kalman filters, to solve nonlinear nonGaussian filtering problems.
引用
收藏
页码:953 / 977
页数:25
相关论文
共 50 条
  • [1] Multimodal Nonlinear Filtering Using Gauss-Hermite Quadrature
    Saal, Hannes P.
    Heess, Nicolas M. O.
    Vijayakumar, Sethu
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT III, 2011, 6913 : 81 - 96
  • [2] Optimized Gauss-Hermite Quadrature with Application to Nonlinear Filtering
    Meng, Haozhan
    Li, X. Rong
    Jilkov, Vesselin P.
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1691 - 1698
  • [3] Nonlinear filtering via generalized Edgeworth series and Gauss-Hermite quadrature
    Challa, S
    Bar-Shalom, Y
    Krishnamurthy, V
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (06) : 1816 - 1820
  • [4] Nonlinear Estimation Using Transformed Gauss-Hermite Quadrature Points
    Singh, Abhinoy Kumar
    Bhaumik, Shovan
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC), 2013,
  • [5] A NOTE ON GAUSS-HERMITE QUADRATURE
    LIU, Q
    PIERCE, DA
    [J]. BIOMETRIKA, 1994, 81 (03) : 624 - 629
  • [6] Gauss-Hermite interval quadrature rule
    Department of Mathematics, Faculty of Electronic Engineering, University of Niš, P.O. Box 73, 18000 Niš, Rs
    [J]. Comput Math Appl, 4 (544-555):
  • [7] Generalized Gauss-Hermite filtering
    Singer, Hermann
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2008, 92 (02) : 179 - 195
  • [8] Gauss-Hermite interval quadrature rule
    Milovanovic, Gradimir V.
    Cvetkovic, Aleksandar S.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (04) : 544 - 555
  • [9] SINS nonlinear initial alignment using Gauss-Hermite quadrature Kalman filter
    Ran, Changyan
    Cheng, Xianghong
    Wang, Haipeng
    [J]. Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2014, 44 (02): : 266 - 271
  • [10] GAUSS-HERMITE QUADRATURE FOR THE BROMWICH INTEGRAL
    Weideman, J. A. C.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (05) : 2200 - 2216