A fast algorithm for Bayesian multi-locus model in genome-wide association studies

被引:3
|
作者
Duan, Weiwei [1 ,2 ,3 ,4 ]
Zhao, Yang [1 ,2 ,3 ,4 ]
Wei, Yongyue [1 ,2 ,3 ,4 ]
Yang, Sheng [1 ,2 ,3 ,4 ]
Bai, Jianling [1 ,2 ,3 ,4 ]
Shen, Sipeng [1 ,2 ,3 ,4 ]
Du, Mulong [1 ,2 ,3 ,4 ]
Huang, Lihong [1 ,2 ,3 ,4 ]
Hu, Zhibin [2 ,5 ,6 ]
Chen, Feng [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Med Univ, Sch Publ Hlth, Dept Biostat, 101 Longmian Rd, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Sch Publ Hlth, Key Lab Modern Toxicol, Minist Educ, Nanjing, Jiangsu, Peoples R China
[3] Nanjing Med Univ, Harvard Sch Publ Hlth, Sch Publ Hlth, Joint Lab Hlth & Environm Risk Assessment HERA, Nanjing, Jiangsu, Peoples R China
[4] Nanjing Med Univ, Key Lab Biomed Big Data, Nanjing, Jiangsu, Peoples R China
[5] Nanjing Med Univ, Sch Publ Hlth, Dept Epidemiol, Nanjing, Jiangsu, Peoples R China
[6] Nanjing Med Univ, Canc Ctr, Jiangsu Key Lab Canc Biomarkers Prevent & Treatme, Sect Clin Epidemiol, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Genome-wide association studies; Multi-locus model; Bayesian adaptive lasso; Variational inference; Variable selection; VARIABLE SELECTION; LUNG-CANCER; MISSING HERITABILITY; REGRESSION SHRINKAGE; LASSO; PREDICTION; EPISTASIS; DCBLD2; CLCP1; LOCI;
D O I
10.1007/s00438-017-1322-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-wide association studies (GWAS) have identified a large amount of single-nucleotide polymorphisms (SNPs) associated with complex traits. A recently developed linear mixed model for estimating heritability by simultaneously fitting all SNPs suggests that common variants can explain a substantial fraction of heritability, which hints at the low power of single variant analysis typically used in GWAS. Consequently, many multi-locus shrinkage models have been proposed under a Bayesian framework. However, most use Markov Chain Monte Carlo (MCMC) algorithm, which are time-consuming and challenging to apply to GWAS data. Here, we propose a fast algorithm of Bayesian adaptive lasso using variational inference (BALVI). Extensive simulations and real data analysis indicate that our model outperforms the well-known Bayesian lasso and Bayesian adaptive lasso models in accuracy and speed. BAL-VI can complete a simultaneous analysis of a lung cancer GWAS data with similar to 3400 subjects and similar to 570,000 SNPs in about half a day.
引用
收藏
页码:923 / 934
页数:12
相关论文
共 50 条
  • [1] A fast algorithm for Bayesian multi-locus model in genome-wide association studies
    Weiwei Duan
    Yang Zhao
    Yongyue Wei
    Sheng Yang
    Jianling Bai
    Sipeng Shen
    Mulong Du
    Lihong Huang
    Zhibin Hu
    Feng Chen
    [J]. Molecular Genetics and Genomics, 2017, 292 : 923 - 934
  • [2] A Fast Multi-Locus Ridge Regression Algorithm for High-Dimensional Genome-Wide Association Studies
    Zhang, Jin
    Chen, Min
    Wen, Yangjun
    Zhang, Yin
    Lu, Yunan
    Wang, Shengmeng
    Chen, Juncong
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [3] Fast and efficient correction for population stratification in multi-locus genome-wide association studies
    Liu, Rui
    Yuan, Min
    Xu, Xu Steven
    Yang, Yaning
    [J]. GENETICA, 2021, 149 (5-6) : 313 - 325
  • [4] Fast and efficient correction for population stratification in multi-locus genome-wide association studies
    Rui Liu
    Min Yuan
    Xu Steven Xu
    Yaning Yang
    [J]. Genetica, 2021, 149 : 313 - 325
  • [5] An Extended Application of the Fast Multi-Locus Ridge Regression Algorithm in Genome-Wide Association Studies of Categorical Phenotypes
    Zhang, Jin
    Shen, Bolin
    Zhou, Ziyang
    Cai, Mingzhi
    Wu, Xinyi
    Han, Le
    Wen, Yangjun
    [J]. PLANTS-BASEL, 2024, 13 (17):
  • [6] Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies
    Tamba, Cox Lwaka
    Ni, Yuan-Li
    Zhang, Yuan-Ming
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (01)
  • [7] A Two-Stage Mutual Information Based Bayesian Lasso Algorithm for Multi-Locus Genome-Wide Association Studies
    Guo, Hongping
    Yu, Zuguo
    An, Jiyuan
    Han, Guosheng
    Ma, Yuanlin
    Tang, Runbin
    [J]. ENTROPY, 2020, 22 (03)
  • [8] Multi-locus Test and Correction for Confounding Effects in Genome-Wide Association Studies
    Chen, Donglai
    Liu, Chuanhai
    Xie, Jun
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (02):
  • [9] Multi-Locus Genome-Wide Association Studies Reveal Fruit Quality Hotspots in Peach Genome
    Linge, Cassia da Silva
    Cai, Lichun
    Fu, Wanfang
    Clark, John
    Worthington, Margaret
    Rawandoozi, Zena
    Byrne, David H.
    Gasic, Ksenija
    [J]. FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [10] An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations
    Segura, Vincent
    Vilhjalmsson, Bjarni J.
    Platt, Alexander
    Korte, Arthur
    Seren, Uemit
    Long, Quan
    Nordborg, Magnus
    [J]. NATURE GENETICS, 2012, 44 (07) : 825 - U144