Parallelizing Spectrally Regularized Kernel Algorithms

被引:0
|
作者
Muecke, Nicole [1 ]
Blanchard, Gilles [2 ]
机构
[1] Univ Stuttgart, Inst Stochast & Applicat, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Univ Potsdam, Inst Math, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
关键词
Distributed Learning; Spectral Regularization; Minimax Optimality;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a distributed learning approach in supervised learning for a large class of spectral regularization methods in an reproducing kernel Hilbert space (RKHS) framework. The data set of size n is partitioned into m = O (n(alpha)), alpha < 1/2, disjoint subsamples. On each subsample, some spectral regularization method (belonging to a large class, including in particular Kernel Ridge Regression, L-2-boosting and spectral cut-off) is applied. The regression function f is then estimated via simple averaging, leading to a substantial reduction in computation time. We show that minimax optimal rates of convergence are preserved if m grows sufficiently slowly (corresponding to an upper bound for alpha) as n -> infinity, depending on the smoothness assumptions on f and the intrinsic dimensionality. In spirit, the analysis relies on a classical bias/stochastic error analysis.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Online learning with kernel regularized least mean square algorithms
    Fan, Haijin
    Song, Qing
    Shrestha, Sumit Bam
    [J]. KNOWLEDGE-BASED SYSTEMS, 2014, 59 : 21 - 32
  • [2] Convergence Rate of Coefficient Regularized Kernel-based Learning Algorithms
    Sheng Baohuai
    Ye Peixin
    Yu Wangke
    [J]. APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (02): : 885 - 889
  • [3] Analysis of Fixed-Point and Coordinate Descent Algorithms for Regularized Kernel Methods
    Dinuzzo, Francesco
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (10): : 1576 - 1587
  • [4] SPECTRALLY TRANSFORMED KERNEL REGRESSION
    Carnegie Mellon University, United States
    [J]. arXiv, 1600,
  • [5] Generating feature spaces for linear algorithms with regularized sparse kernel slow feature analysis
    Wendelin Böhmer
    Steffen Grünewälder
    Hannes Nickisch
    Klaus Obermayer
    [J]. Machine Learning, 2012, 89 : 67 - 86
  • [6] Generating feature spaces for linear algorithms with regularized sparse kernel slow feature analysis
    Boehmer, Wendelin
    Gruenewaelder, Steffen
    Nickisch, Hannes
    Obermayer, Klaus
    [J]. MACHINE LEARNING, 2012, 89 (1-2) : 67 - 86
  • [7] Parallelizing String Similarity Join Algorithms
    Yao, Ling-Chih
    Lim, Lipyeow
    [J]. DATABASES THEORY AND APPLICATIONS, ADC 2018, 2018, 10837 : 322 - 327
  • [8] Parallelizing evolutionary algorithms for clustering data
    Kwedlo, Wojciech
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2006, 3911 : 430 - 438
  • [9] Strategies for Parallelizing Swarm Intelligence Algorithms
    Cicirelli, Franco
    Folino, Gianluigi
    Forestiero, Agostino
    Giordano, Andrea
    [J]. 23RD EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2015), 2015, : 329 - 336
  • [10] Robust Regularized Kernel Regression
    Zhu, Jianke
    Hoi, Steven C. H.
    Lyu, Michael Rung-Tsong
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (06): : 1639 - 1644