A 2-year study on the effect of biochar on methane and nitrous oxide emissions in an intensive rice-wheat cropping system

被引:21
|
作者
Wang, Shuwei [1 ,2 ]
Ma, Shutan [3 ]
Shan, Jun [1 ,2 ]
Xia, Yongqiu [1 ,2 ]
Lin, Jinghui [1 ,2 ]
Yan, Xiaoyuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China
[2] Chinese Acad Sci, Changshu Agroecol Expt Stn, Changshu 215555, Jiangsu, Peoples R China
[3] Anhui Normal Univ, Sch Environm Sci & Engn, Wuhu 241002, Peoples R China
基金
中国国家自然科学基金;
关键词
Biochar; Greenhouse gas fluxes; Rice yields; N use efficiency (NUE); GREENHOUSE-GAS INTENSITY; FIELD EXPERIMENT; SOIL; N2O; DENITRIFICATION; PRODUCTIVITY; PERFORMANCE; MITIGATION; AMENDMENT; STRAW;
D O I
10.1007/s42773-019-00011-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The impacts of biochar addition with nitrogen fertilizer (Urea-N) on greenhouse gas (GHG) fluxes and grain yields are not comprehensively understood. Therefore, we designed a field experiment in an intensive rice-wheat cropping system located in the Taihu Lake region of China and measured CH4 and N2O emissions for 2 consecutive years to examine the impacts of biochar combined with N-fertilizer on rice production and GHG flux. Three field experimental treatments were designed: (1) no N-fertilizer application (N0); (2) 270 kg N ha(-1) application (N270); and (3) 270 kg N-fertilizer ha(-1) plus 25 t ha(-1) biochar application (N270 + C). We found that, compared with urea application alone, biochar applied with Urea-N fertilizer increased N use efficiency (NUE) and resulted in more stable growth of rice yield. In addition, biochar addition increased CH4 emissions by 0.5-37.5% on average during the two consecutive rice-growing seasons, and decreased N2O-N loss by similar to 16.7%. During the first growing season, biochar addition did not significantly affect the global warming potential (GWPt) or the greenhouse gas intensity (GHGI) of rice production (p > 0.05). By contrast, during the second rice-growing season, biochar application significantly increased GWPt and GHGI by 28.9% and 18.8%, respectively, mainly because of increased CH4 emissions. Our results suggest that biochar amendment could improve grain yields and NUE, and increased soil GWPt, resulting in a higher potential environmental cost, but that biochar additions enhance exogenous carbon sequestration by the soil, which could offset the increases in GHG emissions.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [1] A 2-year study on the effect of biochar on methane and nitrous oxide emissions in an intensive rice–wheat cropping system
    Shuwei Wang
    Shutan Ma
    Jun Shan
    Yongqiu Xia
    Jinghui Lin
    Xiaoyuan Yan
    Biochar, 2019, 1 : 177 - 186
  • [2] Quantifying nitric oxide emissions under rice-wheat cropping systems
    Gaihre, Yam Kanta
    Bible, Wendie D.
    Singh, Upendra
    Sanabria, Joaquin
    ENVIRONMENTAL POLLUTION, 2019, 250 : 856 - 862
  • [3] Mitigating nitrous oxide emission using nanoclay-polymer composites in rice-wheat cropping system
    Kirti, Saurabh
    Manjaiah, K. M.
    Datta, S. C.
    Biswas, D. R.
    Arti, Bhatia
    Bandyopadhyay, K. K.
    Ritu, Tomer
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2021, 67 (04) : 459 - 473
  • [4] Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors
    Malla, G
    Bhatia, A
    Pathak, H
    Prasad, S
    Jain, N
    Singh, J
    CHEMOSPHERE, 2005, 58 (02) : 141 - 147
  • [5] Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems
    Sebastian Weller
    David Kraus
    Kevin Ray P. Ayag
    Reiner Wassmann
    M. C. R. Alberto
    Klaus Butterbach-Bahl
    Ralf Kiese
    Nutrient Cycling in Agroecosystems, 2015, 101 : 37 - 53
  • [6] Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems
    Weller, Sebastian
    Kraus, David
    Ayag, Kevin Ray P.
    Wassmann, Reiner
    Alberto, M. C. R.
    Butterbach-Bahl, Klaus
    Kiese, Ralf
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2015, 101 (01) : 37 - 53
  • [7] Carbon dioxide, methane, and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature
    Zou Jianwen
    Huang Yao
    Zong Lianggang
    Zheng Xunhua
    Wang Yuesi
    Advances in Atmospheric Sciences, 2004, 21 (5) : 691 - 698
  • [8] Effect of biochar and liming on soil nitrous oxide emissions from a temperate maize cropping system
    Hueppi, R.
    Felber, R.
    Neftel, A.
    Six, J.
    Leifeld, J.
    SOIL, 2015, 1 (02) : 707 - 717
  • [9] Carbon Dioxide, Methane, and Nitrous Oxide Emissions from a Rice-Wheat Rotation as Affected by Crop Residue Incorporation and Temperature
    邹建文
    黄耀
    宗良纲
    郑循华
    王跃思
    Advances in Atmospheric Sciences, 2004, (05) : 691 - 698
  • [10] Carbon dioxide, methane, and nitrous oxide emissions from a rice-wheat rotation as affected by crop residue incorporation and temperature
    Zou, JW
    Huang, Y
    Zong, LG
    Zheng, XH
    Wang, YS
    ADVANCES IN ATMOSPHERIC SCIENCES, 2004, 21 (05) : 691 - 698