Balancing unevenly distributed data in seismic tomography: a global adjoint tomography example

被引:33
|
作者
Ruan, Youyi [1 ,2 ]
Lei, Wenjie [2 ]
Modrak, Ryan [2 ,3 ]
Orsvuran, Ridvan [4 ]
Bozdag, Ebru [5 ]
Tromp, Jeroen [2 ,6 ]
机构
[1] Nanjing Univ, Sch Earth Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China
[2] Princeton Univ, Dept Geosci, Princeton, NJ 08520 USA
[3] Univ Alaska, Geophys Inst, Fairbanks, AK 99775 USA
[4] Univ Cote Azur, Lab Geoazur, F-06560 Valbonne, France
[5] Colorado Sch Mines, Dept Geophys, Golden, CO 80401 USA
[6] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08520 USA
基金
美国国家科学基金会;
关键词
Inverse theory; Waveform inversion; Computational seismology; Seismic tomography; Theoretical seismology; MANTLE SHEAR VELOCITY; WAVE-FORM INVERSION; MODEL; SURFACE;
D O I
10.1093/gji/ggz356
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The uneven distribution of earthquakes and stations in seismic tomography leads to slower convergence of nonlinear inversions and spatial bias in inversion results. Including dense regional arrays, such as USArray or Hi-Net, in global tomography causes severe convergence and spatial bias problems, against which conventional pre-conditioning schemes are ineffective. To save computational cost and reduce model bias, we propose a new strategy based on a geographical weighting of sources and receivers. Unlike approaches based on ray density or the Voronoi tessellation, this method scales to large full-waveform inversion problems and avoids instabilities at the edges of dense receiver or source clusters. We validate our strategy using a 2-D global waveform inversion test and show that the new weighting scheme leads to a nearly twofold reduction in model error and much faster convergence relative to a conventionally pre-conditioned inversion. We implement this geographical weighting strategy for global adjoint tomography.
引用
收藏
页码:1225 / 1236
页数:12
相关论文
共 50 条
  • [1] GLOBAL SEISMIC TOMOGRAPHY
    DZIEWONSKI, AM
    [J]. OCEANUS, 1992, 35 (04) : 70 - 73
  • [2] Double-difference adjoint seismic tomography
    Yuan, Yanhua O.
    Simons, Frederik J.
    Tromp, Jeroen
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 206 (03) : 1599 - 1618
  • [3] Seismic imaging: From classical to adjoint tomography
    Liu, Q.
    Gu, Y. J.
    [J]. TECTONOPHYSICS, 2012, 566 : 31 - 66
  • [4] Approaches to automated data selection for global seismic tomography
    Valentine, Andrew P.
    Woodhouse, John H.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 182 (02) : 1001 - 1012
  • [5] GLOBAL SEISMIC TOMOGRAPHY OF THE MANTLE
    DZIEWONSKI, AM
    [J]. REVIEWS OF GEOPHYSICS, 1995, 33 : 419 - 423
  • [6] Global tomography using seismic hum
    Haned, A.
    Stutzmann, E.
    Schimmel, M.
    Kiselev, S.
    Davaille, A.
    Yelles-Chaouche, A.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 204 (02) : 1222 - 1236
  • [7] Global adjoint tomography: first-generation model
    Bozdag, Ebru
    Peter, Daniel
    Lefebvre, Matthieu
    Komatitsch, Dimitri
    Tromp, Jeroen
    Hill, Judith
    Podhorszki, Norbert
    Pugmire, David
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 207 (03) : 1739 - 1766
  • [8] Seismic Structure of the Antarctic Upper Mantle Imaged with Adjoint Tomography
    Lloyd, A. J.
    Wiens, D. A.
    Zhu, H.
    Tromp, J.
    Nyblade, A. A.
    Aster, R. C.
    Hansen, S. E.
    Dalziel, I. W. D.
    Wilson, T. J.
    Ivins, E. R.
    O'Donnell, J. P.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (03)
  • [9] Seismic structure of the European upper mantle based on adjoint tomography
    Zhu, Hejun
    Bozdag, Ebru
    Tromp, Jeroen
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 201 (01) : 18 - 52
  • [10] SEISMIC DIFFRACTION TOMOGRAPHY OF ARRAY DATA
    ODEGAARD, E
    DOORNBOS, DJ
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1993, 98 (B3) : 4377 - 4388