Strong consistency of the good-turing estimator

被引:9
|
作者
Wagner, Aaron B. [1 ]
Viswanath, Pramod [1 ,2 ]
Kulkarni, Sanjeev R. [3 ]
机构
[1] Univ Illinois, Coordinated Sci Lab, 1101 W Springfield Ave, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect Engn, Urbana, IL 61801 USA
[3] Princeton Univ, Dept EE, Princeton, NJ USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/ISIT.2006.262066
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We consider the problem of estimating the total probability of all symbols that appear with a given frequency in a string of i.i.d. random variables with unknown distribution. We focus on the regime in which the block length is large yet no symbol appears frequently in the string. This is accomplished by allowing the distribution to change with the block length. Under a natural convergence assumption on the sequence of underlying distributions, we show that the total probabilities converge to a deterministic limit, which we characterize. We then show that the Good-Turing total probability estimator is strongly consistent.
引用
收藏
页码:2526 / +
页数:2
相关论文
共 50 条
  • [1] Convergence Guarantees for the Good-Turing Estimator
    Painsky, Amichai
    [J]. Journal of Machine Learning Research, 2022, 23
  • [2] Convergence Guarantees for the Good-Turing Estimator
    Painsky, Amichai
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [3] Refined Convergence Rates of the Good-Turing Estimator
    Painsky, Amichai
    [J]. 2021 IEEE INFORMATION THEORY WORKSHOP (ITW), 2021,
  • [4] A better Good-Turing estimator for sequence probabilities
    Wagner, Aaron B.
    Viswanath, Pramod
    Kulkarni, Sanjeev R.
    [J]. 2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 2356 - +
  • [5] A good-Turing estimator for feature allocation models
    University of Oxford
    不详
    不详
    不详
    [J]. arXiv,
  • [6] A Good-Turing estimator for feature allocation models
    Ayed, Fadhel
    Battiston, Marco
    Camerlenghi, Federico
    Favaro, Stefano
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 3775 - 3804
  • [7] Mean-Squared Accuracy of Good-Turing Estimator
    Skorski, Maciej
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2846 - 2851
  • [8] Improved Tail Bounds for Missing Mass and Confidence Intervals for Good-Turing Estimator
    Chandra, Prafulla
    Pradeep, Aditya
    Thangaraj, Andrew
    [J]. 2019 25TH NATIONAL CONFERENCE ON COMMUNICATIONS (NCC), 2019,
  • [9] Cardinality Estimation Meets Good-Turing
    Cohen, Reuven
    Katzir, Liran
    Yehezkel, Aviv
    [J]. BIG DATA RESEARCH, 2017, 9 : 1 - 8
  • [10] Good-Turing frequency estimation in a finite population
    Hwang, Wen-Han
    Lin, Chih-Wei
    Shen, Tsung-Jen
    [J]. BIOMETRICAL JOURNAL, 2015, 57 (02) : 321 - 339