A Novel Bio-Inspired Technique for Rapid Real-Time Generator Coherency Identification

被引:28
|
作者
Wei, Jin [1 ]
Kundur, Deepa [2 ]
Butler-Purry, Karen L. [3 ]
机构
[1] Univ Akron, Dept Elect & Comp Engn, Akron, OH 44325 USA
[2] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 2E4, Canada
[3] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Flocking model; generator coherency identification; intelligent monitoring; AREA;
D O I
10.1109/TSG.2014.2341213
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Generator coherency identification is establishing itself as an important task to aid in the resistance of cascading failures within wide-area power systems and as a necessary preprocessing stage in real-time control for transient stability. Inspired by flocking behavior in nature, we propose a novel multiflock-based technique to identify generator coherence rapidly within a short observation window. Our measurement-based approach transforms generator data from the observation space to an information space, whereby the generator frequencies and phases characterize the movement and dynamics of boids within multiple flocks. Analysis of the boids' trajectories enables the discrimination of multiple flocks corresponding to coherent generator clusters. We demonstrate the effectiveness of our technique to identify generator coherency rapidly while exhibiting robustness to environmental noise and cyber attack on the 39-bus New England test system and a modified IEEE 118-Bus test system.
引用
收藏
页码:178 / 188
页数:11
相关论文
共 50 条
  • [1] Towards a Bio-Inspired Real-Time Neuromorphic Cerebellum
    Bogdan, Petrut A.
    Marcinno, Beatrice
    Casellato, Claudia
    Casali, Stefano
    Rowley, Andrew G. D.
    Hopkins, Michael
    Leporati, Francesco
    D'Angelo, Egidio
    Rhodes, Oliver
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2021, 15
  • [2] Real-time bio-inspired contrast enhancement on GPU
    Urena, Raquel
    Morillas, Christian
    Pelayo, Francisco J.
    NEUROCOMPUTING, 2013, 121 : 40 - 52
  • [3] Bio-Inspired Real-Time Robot Vision for Collision Avoidance
    Okuno, Hirotsugu
    Yagi, Tetsuya
    JOURNAL OF ROBOTICS AND MECHATRONICS, 2008, 20 (01) : 68 - 74
  • [4] Embedded Real-Time Implementation of Bio-Inspired Central Pattern Generator with Self-Repairing Function
    Xu, Jinda
    Lu, Meili
    Zhang, Zhen
    Wei, Xile
    ELECTRONICS, 2022, 11 (13)
  • [5] Bio-inspired heterogeneous architecture for real-time pedestrian detection applications
    Luca Maggiani
    Cédric Bourrasset
    Jean-Charles Quinton
    François Berry
    Jocelyn Sérot
    Journal of Real-Time Image Processing, 2018, 14 : 535 - 548
  • [6] Bio-inspired 'surprise' for real-time change detection in visual imagery
    Huber, David J.
    Khosla, Deepak
    AUTOMATIC TARGET RECOGNITION XXI, 2011, 8049
  • [7] Bio-Inspired Adaptive Hyperspectral Imaging for Real-Time Target Tracking
    Wang, Tao
    Zhu, Zhigang
    Blasch, Erik
    IEEE SENSORS JOURNAL, 2010, 10 (03) : 647 - 654
  • [8] A bio-inspired event-based real-time image processor
    Serrano-Gotarredona, R.
    Serrano-Gotarredona, T.
    Acosta-Jimenez, A. J.
    Linares-Barranco, B.
    Camunas-Mesa, L. A.
    2006 1ST IEEE RAS-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS, VOLS 1-3, 2006, : 320 - +
  • [9] Reference free framework for bio-inspired real-time motion detector
    Naqvi, Syed. S.
    Azeemi, Nacem Z.
    Khan, Shahid A.
    INMIC 2007: PROCEEDINGS OF THE 11TH IEEE INTERNATIONAL MULTITOPIC CONFERENCE, 2007, : 199 - 204
  • [10] Bio-inspired heterogeneous architecture for real-time pedestrian detection applications
    Maggiani, Luca
    Bourrasset, Cedric
    Quinton, Jean-Charles
    Berry, Francois
    Serot, Jocelyn
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2018, 14 (03) : 535 - 548