Arbitrary and Variable Precision Floating-Point Arithmetic Support in Dynamic Binary Translation

被引:1
|
作者
Badaroux, Marie [1 ,2 ]
Petrot, Frederic [1 ,2 ]
机构
[1] Univ Grenoble Alpes, TIMA, Grenoble INP, CNRS, Grenoble, France
[2] Univ Grenoble Alpes, Inst Engn, Grenoble, France
关键词
System-Level Simulation; Dynamic Binary Translation; Arbitrary Precision Floating-Point;
D O I
10.1145/3394885.3431416
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Floating-point hardware support has more or less been settled 35 years ago by the adoption of the IEEE 754 standard. However, many scientific applications require higher accuracy than what can be represented on 64 bits, and to that end make use of dedicated arbitrary precision software libraries. To reach a good performance/accuracy trade-off, developers use variable precision, requiring e.g. more accuracy as the computation progresses. Hardware accelerators for this kind of computations do not exist yet, and independently of the actual quality of the underlying arithmetic computations, defining the right instruction set architecture, memory representations, etc, for them is a challenging task. We investigate in this paper the support for arbitrary and variable precision arithmetic in a dynamic binary translator, to help gain an insight of what such an accelerator could provide as an interface to compilers, and thus programmers. We detail our design and present an implementation in QEMU using the MPRF library for the RISC-V processor(1).
引用
收藏
页码:325 / 330
页数:6
相关论文
共 50 条
  • [1] ARBITRARY PRECISION FLOATING-POINT ARITHMETIC
    MOTTELER, FC
    [J]. DR DOBBS JOURNAL, 1993, 18 (09): : 28 - &
  • [2] Seamless Compiler Integration of Variable Precision Floating-Point Arithmetic
    Jost, Tiago Trevisan
    Durand, Yves
    Fabre, Christian
    Cohen, Albert
    Perrot, Frederic
    [J]. CGO '21: PROCEEDINGS OF THE 2021 IEEE/ACM INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION (CGO), 2021, : 65 - 76
  • [3] Binary floating-point arithmetic [1]
    Zuras, Dan
    [J]. Dr. Dobb's Journal, 2005, 30 (04):
  • [4] Double precision floating-point arithmetic on FPGAs
    Paschalakis, S
    Lee, P
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE TECHNOLOGY (FPT), PROCEEDINGS, 2003, : 352 - 358
  • [5] A Dynamic Precision Floating-Point Arithmetic Based on the Infinity Computer Framework
    Amodio, Pierluigi
    Brugnano, Luigi
    Iavernaro, Felice
    Mazzia, Francesca
    [J]. NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT II, 2020, 11974 : 289 - 297
  • [6] SIMULATING LOW PRECISION FLOATING-POINT ARITHMETIC
    Higham, Nicholas J.
    Pranesh, Srikara
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : C585 - C602
  • [7] A PROPOSED STANDARD FOR BINARY FLOATING-POINT ARITHMETIC
    STEVENSON, D
    [J]. COMPUTER, 1981, 14 (03) : 51 - 62
  • [8] FPGA-Specific Custom VLIW Architecture for Arbitrary Precision Floating-Point Arithmetic
    Lei, Yuanwu
    Dou, Yong
    Zhou, Jie
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (11): : 2173 - 2183
  • [9] Multiple precision floating-point arithmetic on SIMD processors
    van der Hoeven, Joris
    [J]. 2017 IEEE 24TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2017, : 2 - 9
  • [10] Floating-point arithmetic
    Boldo, Sylvie
    Jeannerod, Claude-Pierre
    Melquiond, Guillaume
    Muller, Jean-Michel
    [J]. ACTA NUMERICA, 2023, 32 : 203 - 290