TOEPLITZ OPERATORS ON BERGMAN SPACES OF POLYGONAL DOMAINS

被引:2
|
作者
Mannersalo, Paula [1 ]
机构
[1] Univ Helsinki, Dept Math & Stat, POB 68, FI-00014 Helsinki, Finland
关键词
Toeplitz operator; Bergman space; boundedness; polygonal domain; locally integrable symbol; Whitney decomposition; Schwarz-Christoffel formula; PROJECTIONS;
D O I
10.1017/S0013091519000105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundedness of Toeplitz operators with locally integrable symbols on Bergman spaces A(p)(Omega), 1 < p < infinity, where Omega subset of C is a bounded simply connected domain with polygonal boundary. We give sufficient conditions for the boundedness of generalized Toeplitz operators in terms of 'averages' of symbol over certain Cartesian squares. We use the Whitney decomposition of Omega in the proof. We also give examples of bounded Toeplitz operators on A(p)(Omega) in the case where polygon Omega has such a large corner that the Bergman projection is unbounded.
引用
收藏
页码:1115 / 1136
页数:22
相关论文
共 50 条