Numerical solution of Riccati equation using the cubic B-spline scaling functions and Chebyshev cardinal functions

被引:59
|
作者
Lakestani, Mehrdad [2 ]
Dehghan, Mehdi [1 ]
机构
[1] Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran, Iran
[2] Univ Tabriz, Fac Math Sci, Tabriz, Iran
关键词
Cubic B-spline function; Riccati equation; Chebyshev cardinal function; Collocation method; Operational matrix of derivative; HOMOTOPY PERTURBATION METHOD; VARIATIONAL ITERATION METHOD; DIFFERENTIAL-EQUATION;
D O I
10.1016/j.cpc.2010.01.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Two numerical techniques are presented for solving the solution of Riccati differential equation. These methods use the cubic B-spline scaling functions and Chebyshev cardinal functions. The methods consist of expanding the required approximate solution as the elements of cubic B-spline scaling function or Chebyshev cardinal functions. Using the operational matrix of derivative, we reduce the problem to a set of algebraic equations. Some numerical examples are included to demonstrate the validity and applicability of the new techniques. The methods are easy to implement and produce very accurate results. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:957 / 966
页数:10
相关论文
共 50 条
  • [1] Numerical Solution of Fokker-Planck Equation Using the Cubic B-Spline Scaling Functions
    Lakestani, Mehrdad
    Dehghan, Mehdi
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (02) : 418 - 429
  • [2] Numerical Solution of Volterra Functional Integral Equation by Using Cubic B-Spline Scaling Functions
    Maleknejad, Khosrow
    Mollapourasl, Reza
    Mirzaei, Paria
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (02) : 699 - 722
  • [3] A force identification method using cubic B-spline scaling functions
    Qiao, Baijie
    Zhang, Xingwu
    Luo, Xinjie
    Chen, Xuefeng
    [J]. JOURNAL OF SOUND AND VIBRATION, 2015, 337 : 28 - 44
  • [4] On the solution of a nonlinear integral equation on the basis of a fixed point technique and cubic B-spline scaling functions
    Maleknejad, K.
    Mollapourasl, R.
    Shahabi, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 : 346 - 358
  • [5] Cubic B-Spline method for the solution of the quadratic Riccati differential equation
    Ala'yed, Osama
    Batiha, Belal
    Alghazo, Diala
    Ghanim, Firas
    [J]. AIMS MATHEMATICS, 2023, 8 (04): : 9576 - 9584
  • [6] Numerical Solutions of the KdV Equation Using B-Spline Functions
    Mehrdad Lakestani
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2017, 41 : 409 - 417
  • [7] Numerical Solutions of the KdV Equation Using B-Spline Functions
    Lakestani, Mehrdad
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2017, 41 (A2): : 409 - 417
  • [8] Redefined Extended Cubic B-Spline Functions for Numerical Solution of Time-Fractional Telegraph Equation
    Amin, Muhammad
    Abbas, Muhammad
    Baleanu, Dumitru
    Iqbal, Muhammad Kashif
    Riaz, Muhammad Bilal
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 127 (01): : 361 - 384
  • [9] The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions
    Shojaee, S.
    Rostami, S.
    Moeinadini, A.
    [J]. STRUCTURAL ENGINEERING AND MECHANICS, 2011, 38 (02) : 211 - 229
  • [10] Numerical solution of nonlinear system of second-order boundary value problems using cubic B-spline scaling functions
    Dehghan, Mehdi
    Lakestani, Mehrdad
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (09) : 1455 - 1461