Particles-based Thermal Energy Storage Systems for Concentrated Solar Power

被引:6
|
作者
Reyes-Belmonte, Miguel A. [1 ]
Diaz, Elena [1 ]
Romero, Manuel [1 ]
Gonzalez-Aguilar, Jose [1 ]
机构
[1] IMDEA Energy Inst, Avda Ramon de la Sagra 3, Madrid 28935, Spain
基金
欧盟地平线“2020”;
关键词
SUSPENSION; PLANTS;
D O I
10.1063/1.5067215
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, particles-based thermal energy storage (TES) system for concentrated solar power (CSP) is presented and applied to different CSP plant-layout scenarios. The key-component of this system is the fluidized-bed heat exchanger (DPS-HX) that is used for coupling particles-based storage system to the solar loop and to the power block. Mathematical model is used for the design and thermal performance analysis of the heat exchanger coupled to subcritical and supercritical Rankine steam cycles for small and commercial plant sizes. Among the benefits of particles-based thermal energy storage it can be pointed out no temperature restrictions with no freezing nor temperature degradation, ease of handling and no toxicity. It has been found that particles heat exchanger operates at high efficiency (from 91% to 99% for most of cases) and that power consumption for fluidization purposes are negligible compared to thermal power transferred to the work transfer fluid. For large power plant size, it is preferred distributing particles among different heat exchangers connected in parallel instead of passing whole particles and work transfer fluid through just one heat exchanger component.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Thermal energy storage systems for concentrated solar power plants
    Pelay, Ugo
    Luo, Lingai
    Fan, Yilin
    Stitou, Driss
    Rood, Mark
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 79 : 82 - 100
  • [2] Investigation of thermal energy storage systems in concentrated solar power
    Khan, Mahir
    Hassan, N. M. S.
    Azad, A. K.
    [J]. 2ND INTERNATIONAL CONFERENCE ON ENERGY AND POWER (ICEP2018), 2019, 160 : 738 - 745
  • [3] Materials corrosion for thermal energy storage systems in concentrated solar power plants
    Walczak, Magdalena
    Pineda, Fabiola
    Fernandez, Angel G.
    Mata-Torres, Carlos
    Escobar, Rodrigo A.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 86 : 22 - 44
  • [4] High-Temperature Thermal Properties of Particles in Consideration for Thermal Storage in Concentrated Solar Power Systems
    Maskalunas, Jeff
    Nellis, Greg
    Anderson, Mark
    [J]. SOLARPACES 2020 - 26TH INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, 2022, 2445
  • [5] Economic implications of thermal energy storage for concentrated solar thermal power
    Wagner, Sharon J.
    Rubin, Edward S.
    [J]. RENEWABLE ENERGY, 2014, 61 : 81 - 95
  • [6] Progress in research and technological advancements of thermal energy storage systems for concentrated solar power
    Khan, Muhammad Imran
    Asfand, Faisal
    Al-Ghamdi, Sami G.
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 55
  • [7] A brief review of liquid heat transfer materials used in concentrated solar power systems and thermal energy storage devices of concentrated solar power systems
    Wang, Gang
    Pang, Shicheng
    Jiang, Tieliu
    [J]. ENGINEERING REPORTS, 2023, 5 (02)
  • [8] The cost-competitiveness of concentrated solar power with thermal energy storage in power systems with high solar penetration levels
    Miron, Dror
    Navon, Aviad
    Levron, Yoash
    Belikov, Juri
    Rotschild, Carmel
    [J]. JOURNAL OF ENERGY STORAGE, 2023, 72
  • [9] New Materials for Thermal Energy Storage in Concentrated Solar Power Plants
    Guerreiro, Luis
    Collares-Pereira, Manuel
    [J]. SOLARPACES 2015: INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, 2016, 1734
  • [10] Sulfur Based Thermochemical Energy Storage for Concentrated Solar Power
    Wong, Bunsen
    Roeb, Martin
    Thomey, Dennis
    Buckingham, Robert
    Brown, Lloyd
    Sattler, Christian
    [J]. PROCEEDINGS OF THE ASME 7TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, 2013, 2014,