Nonlinearly smoothed EM density estimation with automated smoothing parameter selection for nonparametric deconvolution problems

被引:16
|
作者
Eggermont, PPB [1 ]
LaRiccia, VN [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
deconvolution problem; discrepancy principle; EM algorithm; nonlinear smoothing; nonparametric density estimation; smoothing parameter selection;
D O I
10.2307/2965415
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a nonparametric deconvolution density estimation problem. The estimator is obtained by an EM algorithm for a smoothed maximum likelihood estimation problem, which has a unique continuous solution. We present an implementation of the procedure incorporating a data-driven discrepancy principle far selecting the smoothing parameter. Simulations illustrate the good properties of the resulting estimator when the unknown distribution is smooth and has regularly varying thin tails. Comparisons with a Fourier kernel deconvolution method are made for the case of normal noise. We show that under mild smoothness conditions, the estimator based on the data-driven smoothing parameter is strongly consistent.
引用
收藏
页码:1451 / 1458
页数:8
相关论文
共 50 条