Based on Multiscale Permutation Entropy Analysis Dynamic Characteristics of EEG Recordings

被引:0
|
作者
Lu Lijuan [1 ]
Zhang Daqing [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Sci, Anshan 114044, Peoples R China
关键词
EEG; Permutation Entropy; Multiscale Permutation Entropy; Linear Discriminant Analysis; TIME-SERIES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, a novel feature extraction called entropy is proposed for evaluating the dynamic characteristics of electroencephalogram (EEG). Meanwhile, the linear discriminant analysis(LDA) is used in the classification of EEG signals. The entropy values are calculated using the multiscale permutation entropy (MPE) method, in order to evaluate their performances in terms of classification accuracy, the experiment is implemented using different EEG signals. When all EEGs can be divided into three groups of healthy segments, epileptic seizure-free segments, and epileptic seizure segments, the classification accuracy is as high as 93%. The experiments show that the LDA-based multiscale permutation entropy approach achieves higher classification accuracy rates than the that of single-scale permutation entropy (PE) approach, and MPE can reveal the hidden characteristics of EEG signals.
引用
收藏
页码:9337 / 9341
页数:5
相关论文
共 50 条
  • [1] Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis
    Ouyang, Gaoxiang
    Li, Jing
    Liu, Xianzeng
    Li, Xiaoli
    [J]. EPILEPSY RESEARCH, 2013, 104 (03) : 246 - 252
  • [2] Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia
    Li, Duan
    Li, Xiaoli
    Liang, Zhenhu
    Voss, Logan J.
    Sleigh, Jamie W.
    [J]. JOURNAL OF NEURAL ENGINEERING, 2010, 7 (04)
  • [3] SVM Classification of Epileptic EEG Recordings through Multiscale Permutation Entropy
    Labate, D.
    Palamara, I.
    Mammone, N.
    Morabito, G.
    La Foresta, F.
    Morabito, F. C.
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [4] Multiscale Entropy Analysis of Artifactual EEG Recordings
    Labate, Domenico
    La Foresta, Fabio
    Inuso, Giuseppina
    Morabito, Francesco C.
    [J]. NEURAL NETS WIRN11, 2011, 234 : 170 - 177
  • [5] Complexity Analysis of EEG Data with Multiscale Permutation Entropy
    Ouyang, Gaoxiang
    Dang, Chuangyin
    Li, Xiaoli
    [J]. ADVANCES IN COGNITIVE NEURODYNAMICS (II), 2011, : 741 - 745
  • [6] MULTISCALE ENTROPY ANALYSIS OF EEG RECORDINGS IN EPILEPTIC RATS
    Ouyang, Gaoxiang
    Dang, Chuangyin
    Li, Xiaoli
    [J]. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2009, 21 (03): : 169 - 176
  • [7] Assessing multiscale permutation entropy for short electroencephalogram recordings
    Young-Seok Choi
    Kwangmin Hyun
    Jae-Yeon Choi
    [J]. Cluster Computing, 2016, 19 : 2305 - 2314
  • [8] Assessing multiscale permutation entropy for short electroencephalogram recordings
    Choi, Young-Seok
    Hyun, Kwangmin
    Choi, Jae-Yeon
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2016, 19 (04): : 2305 - 2314
  • [9] Multiscale Permutation Entropy Analysis of the EEG in Early Stage Alzheimer's Patients
    Morison, Gordon
    Tieges, Zoe
    Kilborn, Kerry
    [J]. 2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2012,
  • [10] Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings
    Azami, Hamed
    Escudero, Javier
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2016, 23 : 28 - 41