Model re-parameterization and output prediction for a bioreactor system

被引:21
|
作者
Surisetty, Kartik [1 ]
Siegler, Hector De la Hoz [1 ]
McCaffrey, WilliamC. [1 ]
Ben-Zvi, Amos [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2V4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Parameter identification; Model reduction; Mathematical modeling; Optimal experimental design; Control; Bioreactors; NITROGEN-LIMITED GROWTH; MARINE-PHYTOPLANKTON; CHLORELLA; IDENTIFIABILITY; LUTEIN;
D O I
10.1016/j.ces.2010.04.024
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Microalgal bioprocesses are of increasing interest due to the possibility of producing fine chemicals, pharmaceuticals, and biofuels. In this work, the parameter estimability of a first principles ODE model of a microalgal bioreactor, containing 6 states and 12 unknown parameters, is investigated. For this purpose, the system input trajectories are computed using the D-optimality criterion. Even by using a D-optimal input, not all parameters were found to have a significant effect on model predictions. Linear and non-linear transformations are used to partition the parameter space into estimable and inestimable subspaces. For the linear re-parameterization, a set of four directions in the twelve dimensional parameter space, along which a significant change in the output occurs, is identified using singular value decomposition of the parameter covariance matrix. The non-linear re-parameterization utilizes the three system rate functions as pseudo-outputs in order to perform a non-linear transformation which reduces the dimension of the parameter space from twelve to three. Both the proposed re-parameterization methods achieve a good degree of output prediction at a greatly decreased computational cost. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4535 / 4547
页数:13
相关论文
共 50 条
  • [1] A Saliency Prediction Model Based on Re-Parameterization and Channel Attention Mechanism
    Yan, Fei
    Wang, Zhiliang
    Qi, Siyu
    Xiao, Ruoxiu
    [J]. ELECTRONICS, 2022, 11 (08)
  • [2] Bayesian based Re-parameterization for DNN Model Pruning
    Lu, Xiaotong
    Xi, Teng
    Li, Baopu
    Zhang, Gang
    Dong, Weisheng
    Shi, Guangming
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 1367 - 1375
  • [3] Re-parameterization of the asymmetric model for fungal spore germination
    Boonruang, Panuluk
    Lerkkasemsan, Nuttapol
    [J]. INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2023, 384
  • [4] Online Convolutional Re-parameterization
    Hu, Mu
    Feng, Junyi
    Hua, Jiashen
    Lai, Baisheng
    Huang, Jianqiang
    Gong, Xiaojin
    Hua, Xiansheng
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 558 - 567
  • [5] A Re-parameterization Transformation of Bezier Curve
    Guo, Fenghua
    [J]. ADVANCES IN CIVIL AND INDUSTRIAL ENGINEERING, PTS 1-4, 2013, 353-356 : 3645 - 3648
  • [6] Re-parameterization of multinomial distributions and diversity indices
    Zhang, Zhiyi
    Zhou, Jun
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1731 - 1738
  • [7] Re-Parameterization of Multi-regime STAR-GARCH Model
    Chan, Felix
    Theoharakis, Billy
    [J]. 18TH WORLD IMACS CONGRESS AND MODSIM09 INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: INTERFACING MODELLING AND SIMULATION WITH MATHEMATICAL AND COMPUTATIONAL SCIENCES, 2009, : 1384 - 1390
  • [8] Re-parameterization invariance in fractional flux periodicity
    Murakami, S
    Sasaki, K
    Saito, R
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (12) : 3231 - 3234
  • [9] DyRep: Bootstrapping Training with Dynamic Re-parameterization
    Huang, Tao
    You, Shan
    Zhang, Bohan
    Du, Yuxuan
    Wang, Fei
    Qian, Chen
    Xu, Chang
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 578 - 587
  • [10] Easy Pruning via Coresets and Structural Re-Parameterization
    Yin, Wenfeng
    Dong, Gang
    An, Dianzheng
    Zhao, Yaqian
    Wang, Binqiang
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1725 - 1729