Multi-compartmentalized capsosomes are polyelectrolyte capsules with liposomes as cargo, and are prepared by combining liposomes and polymer capsules. They offer additional functionality while maintaining the advantages and compensating for the weak points of both systems. In this study, a poly electrolyte multilayered liposome was prepared by alternating adsorption of negatively charged sodium hyaluronate (HA) and positively charged chitosan (CH) on the surface of a cationic core liposome (CL) via layer-by-layer (LbL) deposition. Then, smaller sized liposomes (L) were coated onto the multilayered liposome. Lastly, the particle surfaces were coated with HA as a capping layer to obtain a novel type of capsosome with a liposomal core. The amount of adsorbed liposome was measured for different pH values (pH 2-10) and with liposome solutions of different concentrations (1-3%). The highest liposome adsorption occurred at pH 10 in the 3% solution, respectively. Finally, capsosomes in the size range of 500 nm to 2 mu m were observed and the attached liposomes were located both on the surface and within the polymer shell. In conclusion, the cell-mimicking, liposome-based capsosomes could have infinite applications in the field of medicine, pharmaceuticals, and cosmetics as compartmentalized microreactors, multi-drug delivery systems with controlled release, or functional artificial cells in the future. (C) 2016 Elsevier B.V. All rights reserved.