Gaseous toluene powered microbial fuel cell: Performance, microbial community, and electron transfer pathway

被引:86
|
作者
Zhang, Shihan [1 ]
You, Juping [1 ]
An, Ni [1 ]
Zhao, Jingkai [2 ]
Wang, Lidong [3 ]
Cheng, Zhuowei [1 ]
Ye, Jiexu [1 ]
Chen, Dongzhi [1 ]
Chen, Jianmeng [1 ]
机构
[1] Zhejiang Univ Technol, Coll Environm, Key Lab Microbial Technol Ind Pollut Control Zhej, Hangzhou 310014, Zhejiang, Peoples R China
[2] Zhejiang Univ, Key Lab Biomass Chem Engn, Minist Educ, Yuquan Campus, Hangzhou 310027, Zhejiang, Peoples R China
[3] North China Elect Power Univ, Dept Environm Sci & Engn, Baoding 071003, Peoples R China
基金
中国国家自然科学基金;
关键词
MFC; Gaseous toluene; Microbial community; Electron transfer pathway; BIOTRICKLING FILTER; ELECTRICITY-GENERATION; DEGRADATION; ACETATE; REMOVAL; AIR; OXIDATION; PHENOL; STRAIN; CARBON;
D O I
10.1016/j.cej.2018.06.027
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A microbial fuel cell (MFC) was used to evaluate its performance of the gaseous toluene removal in this work. The experimental results revealed that the MFC exhibited a removal efficiency as high as 88% with a toluene concentration of 300 mg m(-3). Moreover, the closed-circuit MFC exhibited 1.4-3.5 times higher toluene removal efficiency compared with the open-circuit MFC, indicating that the interaction between the electrodes and microorganisms accelerates the electron transfer rate and thus enhances the microbial degradation rate. The microbial community analysis indicated that, in the toluene-powered MFC, the growth of the exoelectrogens such as Arcobacter and Geobacter were inhibited and the toluene degraders such as Chryseobacterium and Zoogloea prevailed in the MFC. For example, Arcobacter was almost disappeared and Geobacter was decreased by 40% as the fuel in the MFC switched from the acetate to toluene. Moreover, compared with Chryseobacterium, Zoogloea exhibited a high activity in the toluene removal as evidenced by the relationship between microbial community and its performance. Furthermore, the cyclic voltammetry analysis showed that an oxidation peak at -0.31 V vs Ag/AgCl and an apparent redox-area at -0.1 to + 0.2 V vs Ag/AgCl was observed compared to the abiotic control, which are typical to the menaquinone and the outer membrane cytochromes (OMC) such as OmcZ, OmcS, a-type, and d-type. Therefore, a direct electron transfer pathway involving the menaquinone and OMC were proposed in the toluene-powered MFC. This work will provide some insight into development of gaseous VOCs-powered MFC and a novel technology for the VOCs removal.
引用
下载
收藏
页码:515 / 522
页数:8
相关论文
共 50 条
  • [1] Gaseous toluene powered microbial fuel cell: Performance, microbial community, and electron transfer pathway
    Chen, Jianmeng (jchen@zjut.edu.cn), 1600, Elsevier B.V., Netherlands (351):
  • [2] Exogenous electron transfer mediator enhancing gaseous toluene degradation in a microbial fuel cell: Performance and electron transfer mechanism
    Chen, Han
    Yu, Yanan
    Yu, Yu
    Ye, Jiexu
    Zhang, Shihan
    Chen, Jianmeng
    CHEMOSPHERE, 2021, 282
  • [3] Microbial community dynamics and electron transfer of a biocathode in microbial fuel
    Chen, Guo-Wei
    Choi, Soo-Jung
    Cha, Jae-Hwan
    Lee, Tae-Ho
    Kim, Chang-Won
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2010, 27 (05) : 1513 - 1520
  • [4] A microbial fuel cell capable of converting gaseous toluene to electricity
    Li, Jun
    Li, Ming
    Zhang, Jun
    Ye, Dingding
    Zhu, Xun
    Liao, Qiang
    BIOCHEMICAL ENGINEERING JOURNAL, 2013, 75 : 39 - 46
  • [5] Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms
    Naroa Uria
    Isabel Ferrera
    Jordi Mas
    BMC Microbiology, 17
  • [6] Gaseous isopropanol removal in a microbial fuel cell with deoxidizing anode: Performance, anode characteristics and microbial community
    Liu, Shu-Hui
    Lin, Hsin-Hui
    Lin, Chi-Wen
    JOURNAL OF HAZARDOUS MATERIALS, 2022, 423
  • [7] Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms
    Uria, Naroa
    Ferrera, Isabel
    Mas, Jordi
    BMC MICROBIOLOGY, 2017, 17
  • [8] Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells
    Guo-Wei Chen
    Soo-Jung Choi
    Jae-Hwan Cha
    Tae-Ho Lee
    Chang-Won Kim
    Korean Journal of Chemical Engineering, 2010, 27 : 1513 - 1520
  • [9] Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell
    Lin, Chi-Wen
    Wu, Chih-Hung
    Chiu, Yu-Hsuan
    Tsai, Shen-Long
    FUEL, 2014, 125 : 30 - 35
  • [10] Gaseous toluene, ethylbenzene, and xylene mixture removal in a microbial fuel cell: Performance, biofilm characteristics, and mechanisms
    Zhang, Shihan
    You, Juping
    Chen, Han
    Ye, Jiexu
    Cheng, Zhuowei
    Chen, Jianmeng
    CHEMICAL ENGINEERING JOURNAL, 2020, 386 (386)